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1 Introduction

We develop an econometric model of oligopolists’ entry, competition, and exit that

can be estimated with readily available data on the numbers of active firms and profit

shifters for a panel of independent local markets. Our model features toughness of

competition, sunk entry costs, and market-level demand and cost shocks. Its firms

have complete information and, within each local market, face identical expected

payoffs when making entry and survival decisions.

Each local market in our model is a special case of Abbring, Campbell, Tilly, and

Yang’s (2018b) theoretical model in which the state variables are either observed

demand shifters or unobserved cost shocks. Abbring et al.’s analysis implies that

there exists an essentially unique symmetric Markov-perfect equilibrium in each

local market, which can be quickly computed by solving for the fixed points of a

finite sequence of contraction mappings. We leverage this result to analyze our

model’s identification, develop a rapid and statistically efficient procedure for its

estimation, and facilitate large-scale counterfactual experiments based upon its

estimated primitives.

We assume that the econometric errors, which are shocks to firms’ costs of entry

and continuation, enter firms’ profits in an additively separable way and satisfy a

conditional independence assumption (as in Rust, 1987). These assumptions are

standard in the empirical analysis of dynamic discrete choice models and games

and serve two purposes. First, they simplify the identification of the market’s

state transitions and the firms’ entry and exit decision rules by ensuring that these

only depend on observed (by the econometrician) state variables and independent

transitory shocks. In particular, the conditional independence assumption excludes

persistent unobserved heterogeneity across markets. This allows us to give precise

conditions for the identification of the primitives that determine these decision

rules: the sunk costs of entry, the toughness of competition, and the (transition)

distributions of the demand and cost shocks. Second, they further speed up the

equilibrium computations, by allowing the unobserved shocks to be integrated

out from the contraction mappings before computing their fixed points on lower

dimensional spaces. The resulting algorithm can be embedded in procedures that

call it many times. We develop a version of Rust’s (1987) nested fixed point (NFXP)

maximum likelihood estimation procedure that demonstrates this: It computes an
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equilibrium for each local market in the data and each trial value of the parameters

and performs well both in a Monte Carlo study and in our empirical application.

Our empirical application characterizes entry, competition, and exit in local

markets of the U.S. Motion Picture Theaters industry (NAICS 512131). Our

estimates imply that adding a single theater to a monopoly market nearly halves the

producers’ surplus per consumer. Adding two more theaters brings the per consumer

surplus to 34 percent of its monopoly value. It follows that cinemas compete fiercely

in their local markets, despite earlier evidence that local competition has only

small effects on ticket prices (Davis, 2005). We take this as evidence that movie

theaters intensely compete for movie screening rights. The estimated model’s sunk

costs are substantial, so the initial number of incumbents influences the number

of producers for 10 to 15 years following a permanent demand shock. Without

sunk costs, producers’ dynamic considerations practically vanish and transition to

the long run is almost instantaneous. The industry that is composed of all local

markets in our sample adjusts to permanent demand reductions with both decreased

entry and increased exit.

The movie industry is no stranger to large and persistent demand shocks: In

the early 1950s, the expansion of television halved movie theater attendance (see

e.g. Takahashi, 2015). Current developments like the advance of internet video

streaming may pose a similar threat to cinemas. Netflix, for example, plans to

premiere big movies on its video-on-demand service on the same day that they open

in cinemas (Kafka, 2013; Harwell, 2015); and Paramount Pictures intends to make

some movies available for home viewing only two weeks after their initial theatrical

releases (Schwartzel and Fritz, 2015). With this present relevance as motivation, we

investigate whether a policy that limits competition for screening rights could undo

the impact of such a change on the long-run average number of firms. This would

be reminiscent of the 1970 Newspaper Preservation Act, which sought to maintain

media variety by allowing local newspapers to collude under “joint operating

agreements.” We find that allowing all theaters to split the monopoly surplus would

more than offset the effects of a 25 percent permanent reduction in demand on the

number of theaters. A policy that restricts joint operating agreements to duopoly

markets would still counter the effects of a 17 percent permanent demand decrease.

Such large impacts from changing the toughness of local competition on the number

of producers illustrate its economic importance.
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While our empirical estimates are structural, they are of limited current

policy relevance because the regulation of motion picture theaters appears on no

regulatory agenda. Therefore, we view this paper’s contribution as a methodological

demonstration of feasibility for implementing the complete Lucas (1976) policy-

analysis agenda within dynamic industrial organization. Our analysis extends

Bresnahan and Reiss’s (1990; 1991b) approach to the measurement of the effects

of entry on profitability to a dynamic setting. Bresnahan and Reiss (1994)

proposed using market-level panel data like ours to estimate sunk costs of entry.

However, their empirical analysis of local competition among U.S. dentists was not

firmly grounded in theory. Abbring and Campbell (2010) provided a theoretical

foundation for the ordered choice models employed by Bresnahan and Reiss (1994)

and documented the importance of accounting for uncertainty and sunk costs of

entry, even in analyses of static competition. However, they stopped short of

developing their model into a framework for econometric analysis. We develop such

an econometric framework. Our model’s unique equilibrium involves mixing over

survival and exit actions in some states, because its incumbent firms simultaneously

decide on survival with complete information. As in Abbring et al. (2018b), we

leverage the properties of mixed strategy equilibrium—notably that firms earn the

value of the outside option, zero, whenever they nontrivially randomize over survival

and exit—to simplify the equilibrium analysis and computation. We further simplify

equilibrium computation using the econometric assumptions on our model—additive

separability and conditional independence.

Because firms might mix over survival and exit in equilibrium, standard

identification arguments and NFXP estimation procedures for single-agent dynamic

discrete choice models need nontrivial modifications. After all, if firms mix over

survival and exit actions, the number of firms that serve a local market does not

only depend on the observed state variables and the unobserved cost shock, as in a

single agent model, but also on the outcome of equilibrium mixing. Moreover, the

equilibrium mixing probabilities depend not only on observed state variables, but

also on the unobserved cost shocks.

For identification, we invert probabilities of observing particular market structure

transitions to learn about the equilibrium payoffs that drive firms’ decisions. This

is reminiscent of Magnac and Thesmar’s (2002) approach to the identification of

single-agent dynamic discrete choice models, which inverts choice probabilities to
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identify value contrasts (Hotz and Miller, 1993), and its application to games of

incomplete information (e.g. Pesendorfer and Schmidt-Dengler, 2008; Bajari et al.,

2015). Mixing over survival and exit, however, complicates the inversion. The

familiar choice probability inversion arguments can still be applied to transitions

that never involve mixing, entry and a monopolist’s survival, to identify firms’

values. After all, these events simply occur if and only if the cost shock falls below

thresholds determined by the firms’ values, as in single agent decision problems

and incomplete information games. However, we also show that, because the

probabilities of transitions that involve mixing have a different form, we cannot

fix the distribution of the cost shocks without constraining the data (as we can

in single agent models and incomplete information games). Therefore, we allow

the cost shock distribution to have a free scale parameter and demonstrate that

the equilibrium relation between the mixing probabilities and the unobserved cost

shocks can be used to identify this parameter. We find that this flexibility is indeed

important in our empirical application.

Our NFXP procedure evaluates the likelihood function for each trial value

of the parameters. After calculating an equilibrium for each local market

in the data, which the computational result of Abbring et al. (2018b) makes

straightforward, it constructs the corresponding likelihood. This involves numerical

integration of functions of mixing probabilities over the cost shocks, which, using

the equilibrium conditions, we simplify by changing variables to integration over

mixing probabilities. Our maximum likelihood estimator is statistically efficient,

has standard and easy to compute asymptotic properties, and can straightforwardly

be extended to incorporate unobserved local market heterogeneity. In Section 5,

we compare it to “two-step” estimators for games of incomplete information, such

as Bajari, Benkard, and Levin’s (2007), which avoid equilibrium computation by

first estimating the strategies that firms actually use in the data (using something

like Hotz and Miller’s choice probability inversion) and then exploiting that, in

equilibrium, all firms respond optimally to these strategies.

The remainder of the paper proceeds as follows. Section 2 presents the model

for a single local market and discusses its equilibrium existence, uniqueness, and

computation. Section 3 develops this model’s empirical implementation with

panel data from independent, but not necessarily identical, local markets. We

discuss sampling, identification, likelihood construction, and maximum likelihood
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estimation using the NFXP procedure. Section 4 applies the resulting empirical

framework to the Motion Picture Theaters industry. Section 5 concludes by

comparing our approach to one using two-step estimators for games of incomplete

information.

Four appendices provide supporting results. Appendix A shows how to specialize

Abbring et al.’s (2018b) theoretical model to our model of a local market and

apply their theoretical results to it. Appendix B provides additional details on

how we construct the likelihood function. Appendix C reports results from Monte

Carlo experiments that demonstrate our estimator’s small-sample accuracy and light

computational demands. It also compares our NFXP procedure to Su and Judd’s

(2012) mathematical programming with equilibrium constraints (MPEC) approach.

Appendix D presents evidence in support of our model’s assumption that persistent

heterogeneity across firms does not substantially influence industry dynamics in the

industries we use for estimation.

2 The Model

For each local market, we specify a special case of Abbring et al.’s (2018b) theoretical

model. This section presents this model and discusses its equilibrium uniqueness and

computation. Appendix A further details the links with Abbring et al.’s analysis.

2.1 Primitives

Time is discrete and indexed by t ∈ N ≡ {1, 2, . . .}. In period t, firms that have

entered in the past and not yet exited serve the market. Each firm has a name

f ∈ F ≡ F0 ∪ (N× {1, 2, . . . , ̌}) . Initial incumbents have distinct names in F0,

while potential entrants’ names are from N × {1, 2, . . . , ̌}. The first component of

a potential entrant’s name gives the period in which it has its only opportunity to

enter the market, and the second component gives its position in that period’s queue

of ̌ < ∞ firms. Aside from the timing of their entry opportunities, the firms are

identical.

Figure 1 shows the actions taken by firms in period t and their consequences for

the game’s state at the start of period t+ 1. This is the game’s recursive extensive

form. We divide each period into two subperiods, the entry and survival stages.
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Period t Entry Stage (Sequential Moves)

Start with Nt incumbents and demand state
Ct; or initialize (N1, C1) if t = 1.

Wt ∼ GW (·)

Incumbents earn π(Nt, Ct).

a
(t,1)
E

Period t
Survival Stage,
NE,t = Nt

(t, 1) earns 0.

0

a
(t,2)
E

(t, 1) pays ϕeWt .

1

Period t
Survival Stage,
NE,t = Nt + 1

(t, 2) earns 0.

0
...

(t, 2) pays ϕeWt .

1

a
(t,̌)
E

Period t
Survival Stage,
NE,t = Nt+ ̌−1

(t, ̌) earns 0.

0

Period t
Survival Stage,
NE,t = Nt + ̌

(t, ̌) pays ϕeWt .

1

Period t Survival Stage (Simultaneous Moves)

Start with NE,t active firms with names
f1, f2, . . . , fNE,t

.

af1S

Post-entry value: vE(NE,t, Ct,Wt)

f1 pays eWt . f1 earns 0.

1

af2S

0

f2 pays eWt . f2 earns 0.

1

...

0

a
fNE,t

S

fNE,t
pays eWt . fNE,t

earns 0.

1

Nt+1 ∼ B
(
af1S , a

f2
S , . . . , a

fNE,t

S

)0

Ct+1 ∼ GC(·|Ct)

Post-survival value: vS(Nt+1, Ct)

Period t + 1
Entry Stage

Assumptions:

• ∃π̌ <∞ : ∀(n, c) ∈ N× C, E[π(n,C ′)|C = c] ≤ π̌.

• ∃ň ∈ N : ∀n > ň and ∀c ∈ C, π(n, c) = 0.

• ∀(n, c) ∈ N× C, π(n, c) ≥ π(n+ 1, c).

• ϕ > 0.

• Firms discount future profits with factor ρ ∈ [0, 1).

Figure 1: The Model’s Recursive Extensive Form

Period t begins on the left with the entry stage. If t = 1, nature sets the number N1

of firms serving the market in period 1 and the initial demand state C1. If t > 1,

these are inherited from the previous period. We assume that Ct follows a first-order

Markov process and denote its support with C. Throughout the paper, we refer to

Ct as “demand,” but it can encompass any observed, relevant, and time-varying

characteristics of the market, depending on the empirical context. In Section 4’s

empirical application, Ct is the local market’s residential population.

Each incumbent firm serves the market and earns a surplus π(Nt, Ct). We assume

that

• ∃π̌ <∞ such that ∀(n, c) ∈ N× C, E[π(n,C ′)|C = c] ≤ π̌;

• ∃ň ∈ N such that ∀n > ň and ∀c ∈ C, π(n, c) = 0; and

• ∀(n, c) ∈ N× C, π(n, c) ≥ π(n+ 1, c).
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Here and throughout; we denote the next period’s value of a generic variable Z with

Z ′, random variables with capital Roman letters, and their realizations with the

corresponding small Roman letters. The first assumption is technical and allows

us to restrict equilibrium values to the space of bounded functions. The second

assumption allows us to restrict equilibrium analysis to markets with at most ň firms.

It is not restrictive in empirical applications to oligopolies. The third assumption

requires the addition of a competitor to reduce weakly each incumbent’s surplus.

After incumbents earn their surpluses, nature draws the current period’s shock

to continuation and entry costs, Wt, from a distribution GW with positive density

everywhere on the real line. Then, period t’s cohort of potential entrants {t} ×
{1, . . . , ̌} make entry decisions in the order of the second component of their names.

We denote firm f ’s entry decision with afE ∈ {0, 1}. An entrant (afE = 1) pays the

sunk cost ϕ exp(Wt), with ϕ > 0. A firm choosing not to enter (afE = 0) earns a

payoff of zero and never has another entry opportunity. Such a refusal to enter also

ends the entry stage, so firms remaining in this period’s entry cohort that have not

yet had an opportunity to enter never get to do so.

We denote the number of firms in the market after the entry stage, the sum

of the incumbents and the actual entrants, with NE,t. Suppose that the names

of these active firms are f1, . . . , fNE,t
. In the subsequent survival stage, they

simultaneously decide on continuation with probabilities af1S , . . . , a
fNE,t

S ∈ [0, 1].

After these decisions, all survival outcomes are realized independently across firms

according to the chosen Bernoulli distributions.1 Firms that survive pay a fixed

cost exp(Wt). A firm can avoid this cost by exiting to earn zero. Firms that have

exited cannot reenter the market later. The Nt+1 surviving firms continue to the

next period, t+ 1. The period ends with nature drawing a new demand state Ct+1

from the conditional distribution GC(· Ct). All firms discount future profits and

costs with the discount factor ρ ∈ [0, 1).

In Section 3, we will assume that, for each market, the data contain information

on Nt, Ct, and possibly some time-invariant market characteristics X that shift

1The assumption that entrants immediately contemplate exit might seem strange, but exit
immediately following entry never occurs in equilibrium. Furthermore, this timing assumption
removes an unrealistic possibility. If entrants did not make these continuation decisions, then they
could effectively commit to continuation. This would allow an entrant to displace an incumbent
only by virtue of this commitment power. See Abbring et al. (2018b) for further discussion of these
timing assumptions.
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the market’s primitives. The market-level cost shocks Wt are not observed by the

econometrician and serve as the model’s structural econometric errors. Because

they are observed by all firms and affect their payoffs from entry and survival, they

make the relation between the observed demand state Ct and the market structure

Nt statistically nondegenerate. Bresnahan and Reiss (1991a, Proposition 1) noted

that static games with econometric errors that have complete support and are at

least somewhat independent across both players and outcomes exhibit equilibrium

multiplicity with positive probability. Our specification of a single shock to all firms’

continuation and entry costs imposes sufficient structure on the econometric errors

to avoid this difficulty. The assumptions on {Ct,Wt} make it a first-order Markov

process satisfying Rust’s (1987) conditional independence assumption.2 This ensures

that the distribution of (Nt, Ct) conditional on (Nt? , Ct?) for all t? < t depends only

on (Nt−1, Ct−1), so we require only the model’s transition rules to calculate the

conditional likelihood function.

2.2 Equilibrium

We assume that firms play a symmetric Markov-perfect equilibrium (Maskin and

Tirole, 1988), a subgame-perfect equilibrium in which all firms use the same Markov

strategy. A Markov strategy maps payoff-relevant states into actions. When a

potential entrant (t, j) makes its entry decision in period t, the payoff-relevant states

are M j
t ≡ Nt + j, the current demand Ct, and the cost shock Wt. Here, M j

t is the

number of firms that would be committed to serve the market in period t + 1 if

firm (t, j) would decide to enter. We collect these into the vector (M j
t , Ct,Wt) ∈

H ≡ N × C × R. Similarly, we collect the payoff-relevant state variables of a firm

f contemplating survival in period t in the H-valued (NE,t, Ct,Wt). Since survival

decisions are made simultaneously, this state is the same for all active firms. A

Markov strategy is a pair of functions aE : H → {0, 1} and aS : H → [0, 1]. The entry

rule aE assigns a binary indicator of entry to each possible state. Similarly, aS gives a

survival probability for each possible state. Since time and firms’ names themselves

are not payoff-relevant, we henceforth drop the subscript t and the superscript j

2Rust (1987) defined “conditional independence” for a controlled Markov process, but his
definition specializes to our case of an externally specified process {Ct,Wt} if we take the control
to be trivial. Rust’s conditional independence assumption allows both Wt and Ct to depend on
Ct−1. Our analysis easily extends to this case.
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from the payoff-relevant states.

In a symmetric Markov-perfect equilibrium, a firm’s expected continuation value

at a particular node of the game can be written as a function of that node’s payoff-

relevant state variables. Two of these value functions are particularly useful for

the model’s equilibrium analysis: the post-entry value function, vE, and the post-

survival value function, vS. The post-entry value vE(nE, c, w) equals the expected

discounted profits of a firm in a market with nE firms, demand state c, and cost

shock w just after all entry decisions are made. The post-survival value vS(n, c)

equals the expected discounted profits from being active in the same market with n

firms just after the survival outcomes are realized. The post-survival value does not

depend on w because that cost shock has no forecasting value and is not directly

payoff-relevant after survival decisions are made. Figure 1 shows the points in the

survival stage where these value functions apply.

A firm’s post-survival value equals the expected sum of the profit and post-entry

value that accrue to the firm in the next period, discounted to the current period

with ρ:

vS(n′, c) = ρEaE
[
π(n′, C ′) + vE(N ′E, C

′,W ′)
∣∣N ′ = n′, C = c

]
. (1)

Here, EaE is an expectation over the next period’s demand state C ′, cost shock W ′,

and post-entry number of firms N ′E. This expectation operator’s subscript indicates

its dependence on aE.3 In particular, given N ′ = n′, N ′E is a deterministic function

of aE(·, C ′,W ′). Because the payoff from leaving the market is zero, a firm’s post-

entry value in a state (nE, c, w) equals the probability that it survives, aS(nE, c, w),

times the expected payoff from surviving:

vE(nE, c, w) (2)

= aS(nE, c, w)
(
EaS

[
vS(N ′, c)

∣∣NE = nE, C = c,W = w
]
− exp(w)

)
.

The expectation EaS over N ′ takes survival of the firm of interest as given. That is,

it takes N ′ to equal one plus the outcome of nE−1 independent Bernoulli (survival)

trials with success probability aS(nE, c, w). Its subscript makes its dependence on

3The assumptions on π ensure that 0 ≤ EaE

[
π(n′, C ′)

∣∣N ′ = n′, C = c
]

= E
[
π(n′, C ′)

∣∣C =

c
]
≤ π̌ and that vE is bounded from above. Moreover, optimal exit behavior ensures that vE ≥ 0.

Thus, the expectations in (1) and (2) are well defined and vS is bounded. See Appendix A.
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aS explicit. It conditions on the current values of C and W because these influence

the survival probability’s value.

A strategy (aE, aS) forms a symmetric Markov-perfect equilibrium with payoffs

(vE, vS) if and only if no firm can gain from a one-shot deviation from its

prescriptions:4

aE(m, c, w) ∈ argmax
a∈{0,1}

a
(
EaE [vE(NE, c, w)|M = m,C = c,W = w]− ϕ exp(w)

)
,

aS(nE, c, w) ∈ argmax
a∈[0,1]

a
(
EaS [vS(N ′, c)|NE = nE, C = c,W = w]− exp(w)

)
.

Abbring et al. (2018b) note that it might be possible to construct one symmetric

Markov-perfect equilibrium from another by changing a single firm’s entry or

continuation decision when that firm is indifferent between its available actions.

We follow their approach to eliminating this possibility by restricting attention

to equilibria that default to inactivity. In such equilibria, a potential entrant

that is indifferent between entering or not stays out, and an active firm that is

indifferent between all possible outcomes of the survival stage exits.5 The analysis

in Abbring et al. (2018b) implies that our model has a unique symmetric Markov-

perfect equilibrium that defaults to inactivity, with the following properties (see

Appendix A).

1. There will be no entry in markets with ň or more active firms, so that we

can limit its analysis to states with ň or fewer firms.6 Intuitively, this follows

from the assumption that firms always make negative profits in markets with

more than ň active firms. If ̌ > ň, then at least one potential entrant chooses

not to enter every period. In this sense, the model becomes one of free entry.

Abbring et al. (2018b) impose this free-entry condition, and we follow them.

4Because the cost shock W can be arbitrarily high, firms’ flow payoffs are not bounded
from below. Therefore, it is not immediately obvious a strategy profile forms a subgame perfect
equilibrium whenever no firm can gain from a one-shot deviation. For example, Theorem 4.2 in
Fudenberg and Tirole (1991) does not immediately apply to our game. In Abbring et al. (2018a),
we used the existence of the outside option with a fixed payoff to show that a strategy profile that
is one-shot deviation proof does indeed form a subgame-perfect equilibrium.

5The restriction to equilibria that default to inactivity is innocuous in this paper’s context.
We will assume that W follows a continuous distribution, so that an exact indifference between
activity and inactivity occurs with probability zero.

6If N1 ≤ ň, the equilibrium number of active firms never exceeds ň; otherwise, firms leave with
positive probability until the number firms is no larger than ň.
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2. The post-survival value vS(n′, c) weakly decreases with n′. This implies that

aS(nE, c, w) = 0 if vS(1, c) ≤ exp(w), aS(nE, c, w) = 1 if vS(nE, c) > exp(w),

and aS(nE, c, w) equals the unique survival probability a ∈ (0, 1] that makes

firms indifferent between exit and survival,

0 = − exp(w) +

nE∑
n′=1

(
nE − 1

n′ − 1

)
an
′−1 (1− a)nE−n′ vS(n′, c), (3)

if vS(nE, c) ≤ exp(w) < vS(1, c). 7 As usual, adding shocks to the costs of

continuation which are independent across firms and have a small support can

purify a mixed strategy equilibrium to this continuation game. (See Fudenberg

and Tirole, 1991, Example 6.7.) Moreover, because firms continue and collect

the payoff − exp(w) + vS(nE, c) whenever it is positive, and receive a zero

payoff otherwise, (2) simplifies to

vE(nE, c, w) = max{0,− exp(w) + vS(nE, c)}. (4)

Thus, the post-entry value in a state (nE, c, w) can be computed from the

post-survival value in state (nE, c) without knowing the post-survival values

that would be obtained after the exit of one or more competitors. This result

is key to our recursive procedure for computing the equilibrium values.

3. Equation (4) and the fact that vS(nE, c) weakly decreases with nE imply

that vE(nE, c) weakly decreases with nE. This ensures that aE(m, c, w) =

1 [vE(m, c, w) > ϕ exp(w)], which, with (4), further simplifies to aE(m, c, w) =

1 [vS(m, c) > (1 + ϕ) exp(w)]. Here, 1 [·] = 1 if its argument is true and equals

0 otherwise.

2.3 Computation

Abbring et al. (2018b) provided an algorithm for equilibrium computation which

exploits equation (4) to represent equilibrium post-entry values as solutions to a

sequence of dynamic programming problems. The relevant Bellman equations are

vE(n, c, w) = max {0,− exp(w) + ρEaE [π(n,C ′) + vE(N ′E, C
′,W ′) NE = n,C = c]}

7In (3), we use the convention that 00 ≡ 1, so a = 1 if vS(nE , c) = exp(w).
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START

n ← ň, wE(ň + 1, ·) ← −∞, f ?(·) ← 0

f ?(·) ← limi→∞ T
i
n(f ?)(·)

vS(n, ·) ← f ?(·)

wE(n, ·)← log vS(n, ·)− log(1 + ϕ)

n = 1?n ← n − 1

for all n ∈ {1, ..., ň}, w ∈ R:

vE(n, ·, w)← max {0,− exp(w) + vS(n, ·)}

aE(n, ·, w)← 1 [w < wE(n, ·)]

aS(n, ·, w)←


0 if vS(1, ·) ≤ exp(w)

a if vS(n, ·) ≤ exp(w) < vS(1, ·),
where a solves

∑n
n′=1

(
n−1
n′−1

)
an
′−1(1− a)n−n

′
vS (n′, ·) = exp(w)

1 if vS(n, ·) > exp(w)

STOP
Tn is defined in (7). T in denotes Tn
composed with itself i times.

Yes

No

Figure 2: Equilibrium Calculation
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(5)

for n = ň, ň − 1, . . . , 1. In the case with n = ň, no additional firms enter in

equilibrium. Therefore, only vE(ň, c, w) appears on the right-hand side of (5). With

this, Abbring et al.’s (2018b) algorithm calculates the only possible equilibrium

post-entry value for each of ň incumbent oligopolists. This in turn determines

the only possible equilibrium entry rule that defaults to inactivity, aE(ň, c, w) =

1 [vE(ň, c, w) > ϕ exp(w))]. Proceeding to n = ň − 1, the right-hand side of (5)

includes vE(ň, c, w), aE(ň, c, w), and vE(ň − 1, c, w). The first two of these are

known, so Abbring et al.’s (2018b) algorithm can use (5) to compute the only

possible values of vE(ň − 1, c, w) and aE(ň − 1, c, w). Their algorithm proceeds

recursively to calculate all of the post-entry values and entry rules, and it finishes

by computing the corresponding post-survival values and equilibrium survival rules.

Using the special structure of this paper’s empirical model, we modify Abbring

et al.’s (2018b) algorithm to make the computation less taxing. Specifically, we

recursively compute the post-survival value vS instead of the post-entry value vE

and thereby remove one dimension from calculated value functions. Figure 2 presents

the resulting algorithm in detail. Its recursive portion begins with the calculation

of vS(ň, c). This satisfies

vS(ň, c) = ρE

π(ň, C ′) +

log vS(ň,C′)∫
−∞

(− exp(w) + vS(ň, C ′)) dGW (w) C = c

 .
With vS(ň, c) in hand, we can represent aE(ň, c, w) with a cost-shock threshold,

wE(ň, c) ≡ log vS(ň, c)− log(1 + ϕ).

A firm contemplating entry into a market with ň − 1 incumbents does so in

equilibrium if and only if w < wE(ň, c). With this completed, the algorithm’s

loop proceeds through n = ň− 1, . . . , 1 calculating vS(n, c) and the entry threshold

wE(n, c) ≡ log vS(n, c)− log(1 + ϕ) (6)

recursively. For a generic n, the Bellman operator used in the n’th pass through the

13



loop is

Tn(f)(·) =ρE
[
π(n,C ′) +

∫ log f(C′)

wE(n+1,C′)

(− exp(w) + f(C ′)) dGW (w) (7)

+
ň∑

n′=n+1

∫ wE(n′,C′)

wE(n′+1,C′)

(− exp(w) + vS(n′, C ′)) dGW (w)

∣∣∣∣C = ·
]
.

When the algorithm’s recursive portion is complete, it proceeds to the calculation

of the equilibrium survival rule aS and the post-entry value vE. By construction,

this algorithm’s output is identical to that of Abbring et al.’s (2018b) Algorithm

1, so their Theorem 1 establishes that it is the unique symmetric Markov-perfect

equilibrium that defaults to inactivity.

3 Empirical Implementation

The previous section provided an algorithm to compute the unique symmetric

Markov-perfect equilibrium for given primitives π, ϕ, ρ, GC , and GW . Given

(N1, C1), this equilibrium induces a distribution for the process {Nt, Ct}. This

section studies how observations of this process from a market panel data can be

used to estimate the model’s primitives.

3.1 Sampling

Suppose that we have data from ř markets indexed with r = 1, . . . , ř. For each

market, we observe the number of active firms Nr,t and the demand state Cr,t in

each period t = 1, . . . , ť; for some ť ≥ 2. We also observe some time-invariant

characteristics of each market, which we store in a vector Xr. However, we have no

observations of the cost shocks Wr,t.
8

We assume that ({Nr,t, Cr,t; t = 1, . . . , ť}, Xr) is distributed independently across

markets.9 The initial conditions (Nr,1, Cr,1, Xr) are drawn from a distribution

8Our estimation does not utilize data on firms’ input choices, sales volumes, costs, revenues,
or profits. Such data could be used to directly quantify certain model primitives (for example, by
equating profits to those from Cournot competition with an estimated demand curve and constant
marginal costs) before estimating its other primitives using the procedure outlined in this section.

9Our estimation procedure can be extended to allow for observed (to the econometrician) time-
varying covariates that are common across markets, such as business cycle indicators, provided that
firms can use the model’s primitives to forecast their evolution.
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that we leave unspecified. Thereafter, industry dynamics follow the transition

rules implied by the unique equilibrium of our model, with primitives πr(·, ·) =

π(·, ·|Xr, θP ), ϕr = ϕ(Xr, θP ), and ρr = ρ(Xr, θP ) for some finite vector θP ;

GC,r(· | ·) = GC(· | · ;Xr, θC) for some finite vector θC ; and GW,r(·) = GW (· ;Xr, θW )

for some finite vector θW .10 We collect the model’s structural parameters in a vector

θ ≡ (θP , θC , θW ).

3.2 Identification

In this section, we analyze the extent to which we can determine θ when we observe

the population ({Nt, Ct; t = 1, . . . , ť}, X) underlying our data. Specifically, suppose

that we know the distribution of (N ′, C ′) conditional on (N,C,X) = (n, c, x) for all

n ∈ {0}∪N, c ∈ C, and a specific value x of the market characteristics.11 Throughout

the remainder of this section, we keep the conditioning information X = x implicit,

so the results demonstrate identification of the model’s primitives as nonparametric

functions of the market characteristics.

To begin, note that the population information directly identifies GC .12 The

remaining primitives of interest are the model’s sunk cost ϕ, surplus function π, and

the distribution GW of the econometric error. Our identification argument for these

parameters builds upon that of Magnac and Thesmar (2002), who retrieve value

functions by applying the inverse cumulative distribution function of the econometric

error to observed choice probabilities (Hotz and Miller, 1993). Since this strategy

requires some knowledge of GW , we assume that this belongs to the parametric

family

GW (w) = Φ

(
w + ω2/2

ω

)
, (8)

10These assumptions rule out persistent unobserved heterogeneity in the primitives across
markets. Relaxing this and appropriately extending our NFXP procedure is straightforward
in principle, but it does require us to provide a model-based solution to the “initial conditions
problem” that (Nr,1, Cr,1, Xr) is not independent of the persistent unobservables.

11For x fixed, the hypothetical data scenario that is informative about this distribution involves
the number of transitions from (N,C) to (N ′, C ′) approaching infinity. Whether such transitions
are coming from the same market or many different markets all with characteristics x plays no
role in the identification argument.

12Above, we specified this distribution as a function of a vector of parameters, θC . Such a
parametric restriction might be of use when estimating using a finite sample, but it is not necessary
for identification.
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where Φ is the cumulative distribution function of a standard normally distributed

random variable, with density φ. That is, exp(W ) has a log-normal distribution with

unit mean and scale parameter ω. Since observations of the number of producers

give us no information on the level of profits, we do not attempt to separately

identify the location parameter of this distribution.13

Analogously to the entry threshold wE(n, c) that we defined in (6), we define

a cost-shock threshold for sure survival, wS(n, c) ≡ log vS(n, c). A firm deciding

on continuation in state (nE, c, w) will survive for sure if w < wS(n, c), exit with

positive probability if w > wS(n, c), and exit for sure if w ≥ wS(1, c).

We can retrieve wS(1, c) (a monopolist’s survival threshold), up to the unknown

scale and shift in GW , from the probability of a monopolist surviving:

wS(1, c) + ω2/2

ω
= Φ−1 (Pr[N ′ ≥ 1|N = 1, C = c]) . (9)

Similarly, we can recover wE(n, c) (the threshold for entry as the nth active firm)

from the probability of at least n firms entering a previously empty market:

wE(n, c) + ω2/2

ω
= Φ−1 (Pr[N ′ ≥ n|N = 0, C = c]) . (10)

These and the definitions of wS(1, c) and wE(1, c) can be used to identify the sunk

cost of entry up to the scale parameter ω:

log (ϕ+ 1)

ω
=

wS(1, c)− wE(1, c)

ω
(11)

= Φ−1 (Pr[N ′ ≥ 1|N = 1, C = c])− Φ−1 (Pr[N ′ ≥ 1|N = 0, C = c]) .

In turn, this allows us to retrieve

wS(n, c) + ω2/2

ω
=
wE(n, c) + ω2/2

ω
+

log (ϕ+ 1)

ω
.

The argument’s next step identifies the scale parameter ω. In a simple probit

model, the analogous parameter is not identified unless one places an a priori

restriction on the regressors’ coefficients. For the present model, the mixing

13This implies that we do not identify cross-market differences in the scale of producers’ surplus,
fixed costs, and sunk costs. Rather, we identify producers’ surplus and sunk costs relative to fixed
costs for each market.
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sometimes employed by exiting oligopolists provides information on the scale of

payoffs relative to the econometric error. This information identifies ω without the

use of auxiliary restrictions on payoffs.

To proceed, suppose that, for some c? ∈ C and n? ∈ {2, . . . , ň},

wS(1, c?) = · · · = wS(n? − 1, c?) > wS(n?, c?).

This is equivalent to requiring that

vS(1, c?) = · · · = vS(n? − 1, c?) > vS(n?, c?)

for some c? and n?. This is a very weak condition, particularly given that we have

already established that vS(n′, ·) always weakly decreases in n′. Moreover, it can be

verified in data, because we have already determined the sure survival thresholds

up to a common scale and location shift.

Now, consider the probability of n? incumbents simultaneously exiting:

Pr[N ′ = 0|N = n?, C = c?]

= Pr[W ≥ wS(1, c?)] +

∫ wS(1,c?)

wS(n?,c?)

[1− aS(n?, c?, w)]n
?

dGW (w)

= Pr[N ′ = 0|N = 1, C = c?] +

∫ wS(1,c?)

wS(n?,c?)

[1− aS(n?, c?, w)]n
?

dGW (w).

(12)

Because the two transition probabilities in (12) are known, so is the integral on its

right-hand side.

We will now show that this integral can be written as a known monotone function

of ω, so that it identifies ω. Using vS(1, c?) = · · · = vS(n? − 1, c?), we can explicitly

solve for the mixing probability aS(n?, c?, w):

aS(n?, c?, w) =

(
vS(1, c?)− exp(w)

vS(1, c?)− vS(n?, c?)

) 1
n?−1

.

Rewrite the integral on the right-hand side of (12) by substituting this expression for

aS(n?, c?, w), replace post-survival values with sure survival thresholds, and change
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the variable of integration from w to ε = (w + ω2/2)/ω . This gives

∫ k1

kn?

[
1−

(
exp(ωk1)− exp(ωε)

exp(ωk1)− exp(ωkn?)

) 1
n?−1

]n?

φ(ε) dε, (13)

with

k1 ≡
wS(1, c?) + ω2/2

ω
and kn? ≡ wS(n?, c?) + ω2/2

ω
.

Because k1 and kn? have already been identified, and can thus be treated as known

constants at this point,

exp(ωk1)− exp(ωε)

exp(ωk1)− exp(ωkn?)
=

1− exp(−ω (k1 − ε))
1− exp(−ω (k1 − kn?))

(14)

is a known function of ω. Moreover, it is straightforward to verify that it is strictly

increasing in ω for ε ∈ (kn? , k1). Hence, the integrand in (13) is a known, strictly

decreasing function of ω. Because the domain of integration of the integral in (13)

is also known, this establishes that the integral itself is a known strictly decreasing

function of ω, so that ω can be uniquely determined from the integral’s known value.

With ω identified, we immediately recover ϕ, wS = log vS, wE, and vE (and

therewith aS and aE). The discount factor and per period surplus function remain

to be identified. For the discount factor, we can follow one of two approaches. First,

we can assume that auxiliary information like the average borrowing rate for small

businesses identifies ρ. Alternatively, we can use variation in C that impacts next

period’s expected post-entry value but not next period’s expected surplus to identify

ρ.14 Specifically, suppose that there exist two values c1 6= c2 such that

EaE [vE(N ′E, C
′,W ′)|N ′ = n′, C = c1] 6= EaE [vE(N ′E, C

′,W ′)|N ′ = n′, C = c2],

but E[π(n′, C ′)|C = c1] = E[π(n′, C ′)|C = c2]. The former condition can be verified

14Magnac and Thesmar (2002) formalized the use of such exclusion restrictions to identify the
discount factor in dynamic discrete choice models. They focused on high level restrictions on a
particular value contrast, the “current value.” Abbring and Daljord (2017) explored the identifying
power of exclusion restrictions on primitive utility, such as the per period surplus in our model. As
they noted, because the payoff to one of the choices equals a constant (zero), an exclusion restriction
on Magnac and Thesmar’s current value coincides with an exclusion restriction on primitive utility,
the expected surplus, in our model.
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from data because vE, aE, GC and GW are identified, but the latter is an a priori

exclusion restriction. Under this assumption, we can show that

ρ =
vS(n′, c1)− vS(n′, c2)

EaE [vE(N ′E, C
′,W ′)|N ′ = n′, C = c1]− EaE [vE(N ′E, C

′,W ′)|N ′ = n′, C = c2]
.

Of course, which of these approaches is most appropriate depends on the application

at hand. In either case, given ρ we can recover E[π(n′, C ′)|C = c] from the relevant

Bellman equation. We summarize these results in a theorem.

Theorem 1 Suppose that ρ is known and that GW is specified up to scale as in (8).

Furthermore, suppose that, for some c? ∈ C and n? ∈ {2, . . . , ň},

Pr[N ′ = 0|N = 1, C = c?] = · · · = Pr[N ′ = 0|N = n? − 1, C = c?]

< Pr[N ′ = 0|N = n?, C = c?].

Then, the distribution of (N ′, C ′) given (N,C) = (n, c) for n ∈ N0 and c ∈ C
uniquely determines GC, GW , ϕ, and E [π(·, C ′)|C = c] for c ∈ C.

To emphasize that it can be verified in data, we have rewritten the required condition

on the sure survival thresholds in terms of known probabilities. The equivalence

between the two sets of conditions follows from fact that the integral on the right-

hand side of (12) has a positive integrand and so equals zero if and only if its limits

of integration equal each other. That is, if and only if wS(n?, c?) = wS(1, c?).

We only establish identification of the expected surplus E [π(·, C ′)|C = c], not

of the surplus function π itself. This makes sense, because entry and exit decisions

are taken after a period’s surplus is earned and before next period’s demand state

C ′ is realized, so that observed market transitions only depend on π through the

expected surplus. Nevertheless, in some applications, for example those involving

counterfactual specifications ofGC , it may be useful to separately identify π. In these

cases, π can be uniquely determined from the expected surplus provided that GC

satisfies a completeness condition of the type now routinely used in nonparametric

identification analysis (see e.g. Newey and Powell, 2003).

We take three lessons away from this identification analysis. First, in theory, it

is possible to identify each local market’s parameters without examining the cross-

sectional relationship between N and C used by Bresnahan and Reiss (1990, 1991b).
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In particular, we do not use the joint distribution of N and C in the initial period

for identification. Appropriately, the maximum likelihood estimation procedure we

develop below conditions upon each market’s initial values of N and C.

Second, we can identify the scale parameter ω of the econometric error, whereas

the error distribution can be fixed without restricting the data in comparable single

agent decision problems (Magnac and Thesmar, 2002) and incomplete information

games. To understand this, first note that the probabilities of transitions that

do not involve mixing, but only entry and monopolist’s survival, do not provide

information on ω. Sure enough, the assumption that entrants’ payoffs only differ

from incumbents’ payoffs by an additive entry cost that does not depend on the

demand state constrains the monopolist’s survival and entry thresholds to differ by

a constant log(ϕ + 1) only.15 It is clear from (11) though that if (9) and (10) are

satisfied for some wE, ϕ, and ω, they can also be met for any other value of ω

by simply adjusting ϕ to solve (11) and affinely transforming wE to satisfy (10).

A similar argument applies to comparable single agent decision problems, and by

extension to incomplete information games in which GW is the distribution of a

privately observed shock to an individual firm’s costs, because these imply similar

inversion formulas. In our framework, however, we can in addition identify an

integral like the one in the right hand side of (12), which is the probability that

a market loses all its firms through nontrivial mixing. If the mixing probability

in its integrand would be constant, this integral would simply be proportional to

the probability that the cost shock falls in an interval bounded by (sure) survival

thresholds. In that case, an argument like that for the entry and monopolist’s

survival thresholds would apply and this probability would not be informative on

ω. However, the equilibrium conditions imply that the mixing probability depends

nontrivially on the cost shock. Our analysis shows that this, with the specific

equilibrium structure on the mixing probabilities, suffices to identify ω.

Identifying the analogous parameter in static discrete choice models always

requires restricting the non-stochastic portion of payoffs in some way. Similar

restrictions on π(n, c) may help identifying the distribution GW , and in particular ω,

in our game, provided that they translate in useful restrictions on the firms’ values

15It is clear from Appendix A that we can relax this restriction by allowing ϕ to depend on the
demand state. The point we would like to make here though is that despite this restriction, the
transition probabilities that do not involve mixing carry no information on ω.
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and the corresponding entry and (sure) survival thresholds.16 This may be useful in

practice, when estimating our model with a finite sample. Indeed, in our empirical

application, we specify π(n, c) to be linear in c.

Third, estimation of our model need not follow the NFXP approach that we

adopt. In the spirit of Hotz and Miller (1993) and following our identification

argument, we could instead estimate the equilibrium value functions, and the

corresponding equilibrium strategies, directly by inverting the observed probabilities

of market structure transitions that do not involve mixing, but only entry or a

monopolist’s survival. Subsequently, we could estimate the underlying primitives

to equal those that best rationalize the observed choices (or rather the implied

market structure transitions), assuming that other firms (and possibly future selfs)

use the estimated strategies. This procedure would differ from that pioneered by

e.g. Bajari, Benkard, and Levin (2007) or Pesendorfer and Schmidt-Dengler (2008)

for incomplete information games in two ways. In its first step, it would not use

all possible transitions, but combine data on a selection of transitions with the

restriction that surviving incumbents’ and entrants’ values only differ by an additive

entry cost to back out equilibrium values. In its second step, it would have to

account for mixing. Like Bajari et al.’s, our procedure would have to deal with

the fact that the inversion in the first step depends on an unknown parameter,

ω. This paper demonstrates that our NFXP approach works well, so there is little

point in further developing a two-step method for our complete information game. In

practice, one may instead face a choice between our NFXP approach and estimating

a similar incomplete information game using an existing two-step approach. We

further discuss this in Section 5.

3.3 Likelihood

We now focus on inferring the structural parameters θ from the conditional likelihood

L(θ) of θ for data on market dynamics {Nr,t, Cr,t; t = 2, . . . , ť; r = 1, . . . , ř} given the

initial conditions (Nr,1, Cr,1, Xr; r = 1, . . . , ř).17 Using the model’s Markov structure

16This approach has been explored in the context of incomplete information games; see e.g. the
discussion in Bajari et al. (2015).

17We neither specify nor estimate the initial conditions’ distribution, because we want to be
agnostic about their relation to the dynamic model. We could instead assume that the initial
conditions are drawn from the model’s ergodic distribution. This would allow us to develop a more
efficient estimator, at the price of robustness. Moreover, it would allow us to deal with the initial
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and conditional independence, this likelihood can be written as L(θ) = LC(θC) ·
LN(θ), with

LC(θC) ≡
ř∏
r=1

ť−1∏
t=1

gC (Cr,t+1 | Cr,t;Xr, θC) ,

the marginal likelihood of θC for the demand-state dynamics; and

LN(θ) ≡
ř∏
r=1

ť−1∏
t=1

p (Nr,t+1 | Nr,t, Cr,t;Xr, θ) ,

the conditional likelihood of θ for the evolution of the market structures.18 Here,

gC (· | · ;Xr, θC) is the density of GC,r and p(n′|n, c;Xr, θ) ≡ Pr(Nr,t+1 = n′|Nr,t =

n,Cr,t = c;Xr, θ) is the equilibrium probability that market r with n firms and in

demand state c has n′ firms next period.

Note that LC(θC) can be computed directly from the demand data, without

ever solving the model. To calculate LN(θ) we need to compute the equilibrium

transition probabilities p(· | · ;Xr, θ) for each distinct value of Xr in the sample. To

this end, we first compute the equilibrium post-survival values vS,r corresponding

to the primitives implied by Xr and θ. From these, we obtain cost-shock thresholds

for entry and sure survival, wE,r(n, c) ≡ log vS,r(n, c)− log (1 + ϕr) and wS,r(n, c) ≡
log vS,r(n, c).

For n′ > n, p (n′|n, c;Xr, θ) can easily be calculated as the probability that Wr,t

falls into [wE,r(n
′ + 1, c), wE,r(n

′, c)). For n′ ≤ n, the computations are complicated

by the equilibrium mixing of survival decisions. For example, the number of firms

can remain unchanged either because survival is a dominant action or because

firms choose to exit with positive probability but by chance they all survive.

Therefore, the probability that n′ = n > 0 sums the probability that Wr,t falls

into [wE,r(n + 1, c), wS,r(n, c)) (so that survival is a dominant action but no entry

occurs) with the probability that it instead equals some w ∈ [wS,r(n, c), wS,r(1, c))

(so that incumbents mix exit and survival) and that all n firms survive when they

mix with probability aS(n, c, w).

conditions problems mentioned in Footnote 10.
18As in Ericson and Pakes (1995), firms begin to earn profits in the period after their entry

decisions. Since Nr,t+1 is determined before the realization of Cr,t+1, its conditional distribution
depends only on Cr,t.
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Similar complications arise for n′ ∈ {1, . . . , n − 1}, which can only occur if

firms nontrivially mix exit and survival, and for n′ = 0, which can occur if either

the incumbents all choose certain exit or they are mixing nontrivially and all exit

by chance. Accounting for the influence of mixed strategies on p (n′|n, c;Xr, θ) is

tedious but straightforward. The interested reader should consult Appendix B.

3.4 Estimation

We have created C++ and Matlab code for computing the full-information maximum

likelihood estimator of θ. As in Rust (1987), computation proceeds in three steps:

1. Estimate θC with θ̃C ≡ argmax θC
LC(θC);

2. estimate (θP , θW ) with (θ̃P , θ̃W ) ≡ argmax (θP ,θW ) LN(θP , θ̃C , θW ); and

3. estimate θ by maximizing the full likelihood function θ̂ ≡ argmax θ L(θ), using

θ̃ ≡ (θ̃P , θ̃C , θ̃W ) as a starting value for the chosen optimization routine.

Note that the partial likelihood estimator θ̃ computed in the first two steps is

consistent, but not efficient. The third step’s estimator θ̂ is asymptotically efficient.

To compute estimated standard errors, we use the outer-product-of-the-gradient

estimator of the (full) information matrix. In particular, we assume that ř is large

and ť is small and use the average over markets of the outer products of the market-

specific gradients, evaluated at θ̂.

The C++ code provides a full implementation of this three-step NFXP procedure

for specifications with and without covariates. We use a standard non-linear,

gradient-based optimizer to perform the optimization, and we compute all gradients

analytically. The Matlab code provides a more user friendly implementation of the

NFXP procedure with neither covariates nor analytical gradients that can be used

as a sandbox for experimentation and teaching.

In Appendix C, we report the results of Monte Carlo experiments that estimate

the model’s parameters given data generated by the model itself. Using these

same “data,” we also estimate our model using Su and Judd’s (2012) mathematical

programming with equilibrium constraints (MPEC) procedure. Those experiments

lead us to four conclusions. First, the NFXP estimator can distinguish between

economically meaningful hypotheses with ideal observations from as few as 250

markets over 10 years. Second, asymptotic distribution theory gives a good guide to
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standard confidence intervals’ coverage probabilities with such small samples. Third,

the NFXP estimator takes very little time to compute. The average estimation time

across 1,000 experiments was only 21 seconds. Thus, our estimator’s computational

burden is not substantially greater than that of static models of long-run industry

structure, a point emphasized by Pakes, Ostrovsky, and Berry (2007) regarding their

two-step estimators. Fourth and finally, the MPEC procedure always calculated

estimates practically indistinguishable from those of our NFXP estimator but was

40 times slower. Thus, it appears that our estimator passes the initial quality

assurance test of being accurate and relatively easy to compute when applied to

simulated data. Since estimation takes very little computer time, a potential user

can easily calculate the implications of application-specific data imperfections, like

measurement error in market size.

4 Motion Picture Theaters

In this section we apply the model and its estimator to an empirical analysis of

the Motion Picture Theaters industry. Davis (2006) showed that theater locations

substantially influence consumers’ decisions about whether and where to attend

film screenings. Indeed, one’s probability of attending a given theater declines

considerably when the travel distance moves from between zero and five miles

to between five and ten miles.19 Davis (2002) found that the concomitant low

cross-price elasticities from such spatial preferences impact firms’ pricing behavior.

Using observations from a New Haven area theater that experimented with a

temporary price cut, Davis established that rivals five to seven miles away responded

with lower prices but those ten to twelve miles away did not. This spatial

differentiation of Motion Picture Theaters has two implications for our empirical

analysis. First, theaters that are sufficiently far apart plausibly operate in distinct

markets. Consequently, in Section 4.1, we define such markets using readily available

geographic data. Second, variation across markets in the within-market spatial

structure of demand is likely to come with variation in their profits and toughness

of competition. To capture this, we include in Xr a measure of the diversity of

consumers’ geographic preferences.

The empirical analysis proceeds in three steps. First, we describe the data we

19See the logit model estimates reported in Table 5 of Davis (2006).
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use for the estimation (in Appendix D, we provide evidence from these data in

favor of our model’s assumption that persistent heterogeneity across firms does not

substantially contribute to industry dynamics). Second, we present estimates of the

model’s parameters and discuss their implications for the toughness of competition

between theater owners for screening rights. Third, we present several simulations of

the model that highlight the long-lasting impact of initial conditions, illustrate the

importance of sunk costs in determining the length of “short-run” transitions to the

long run, and quantify how lenient antitrust policy can offset permanent negative

demand shocks.

4.1 The Data

Our analysis equates a market with a Micropolitan Statistical Area (µSA) as defined

by the Office of Management and Budget. Each one is based around an urban core

of at least 10,000 but less than 50,000 inhabitants.20 We dropped the µSA “The

Villages, FL,” because its population growth far exceeds that of any other µSA. The

remaining 573 µSAs account for about ten percent of the United States population.

We measured the diversity of the geographic preferences of each µSA’s residents

using the locations and populations of its constituent year 2000 Census tracts. For

this, we supposed that each census tract is a circle with an area equal to that of

the tract itself, that population is uniformly distributed over the area enclosed by

the circle, that all travel within a tract must pass through its center, and that

travel between tracts follows straightline roads that connect their centers.21 We

then measured geographic preference diversity with the average distance between

two randomly-chosen residents of the µSA. Likewise, we can measure the average

distance between two randomly chosen individuals from two distinct µSAs. By

construction, µSAs are geographically isolated from larger Metropolitan Statistical

Areas, so we measure a given µSA’s geographic market isolation as the shortest such

distance to another µSA.

20We use the release of the “Annual Estimates of the Population of Metropolitan and
Micropolitan Statistical Areas from April 1, 2000 to July 1, 2009” from the US Census Bureau,
which includes information on 574 µSAs.

21For these calculations, we used the tract population and geographic location information
from the National Census Tracts Gazetteer File for the 2000 Decennial Census. See http://www.

census.gov/geo/maps-data/data/gazetteer2000.html for its documentation. We used each
tract’s latitude and longitude in this file as its center.
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Table 1: Summary Statistics for µSAs

Quantile
10 25 50 75 90

Population 23.51 32.57 42.67 62.32 87.71
Median Household Income 27.40 30.40 33.52 38.04 42.40
Geographic Preference Diversity 9.24 11.17 13.37 16.81 21.23
Geographic Market Isolation 23.94 28.77 37.61 51.83 72.70

Note: All variables are measured as of 2000 for the 573 µSAs in our sample. Population is expressed in thousands
of people, Median household income is expressed in thousands of dollars per year, and the remaining variables are
expressed in miles. Please see the text for further details.

For the 573 µSAs, Table 1 displays the five standard quantiles for population,

median household income, geographic preference diversity, and geographic market

isolation. Population varies by about a factor of four from the 10th to the 90th

percentiles. For the United States as a whole, median household income equalled

$41, 990 in 2000. This is considerably higher than the median value across the µSAs,

$33, 520. More than 80 percent of the µSAs have median household incomes within

$10, 000 of this central tendency. The median geographic preference diversity is

13.37 miles. Perhaps unsurprisingly, this variable is highly skewed to the right. The

10th percentile is 9.24 miles, while the 90th percentile is 21.23 miles. Given the

evidence from Davis (2002, 2006) regarding urban consumers’ transportation costs

for attending movies, it is plausible that the least geographically diverse µSAs in our

sample might form a single geographic market. On the other hand, those with the

most geographic preference diversity might actually be collections of two or more

“markets” with relatively low elasticities of substitution across them. In any case,

the measures of geographic isolation indicate that the elasticities of substitution

across locations within a µSA should be much larger than those across µSAs. Its

median value across µSAs equals 37.61 miles. Indeed, there are only eight µSAs

where this distance is less than twenty miles. We conclude that the µSAs are

isolated enough from each other so that consumer substitution between them can

be ignored.

The Motion Picture Theaters industry (NAICS code 512131) consists of all

establishments that primarily display first-run and second-run motion pictures,

except for drive-in theaters. Our estimation uses annual counts of the number

of theaters (not firms) in each µSA from the County Business Patterns (CBP),
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Table 2: Frequencies and Transition Rates from the County Business Patterns

% of µSA-Year Observations
by Number of Movie Theaters

0 1 2 3 ≥ 4
19.3 50.6 19.4 5.8 4.9

% of Transitions Given Nt−1
↓ Nt−1/Nt → 0 1 2 3 ≥4

0 87.9 11.3 0.7 0.0 0.1
1 3.6 90.9 5.0 0.4 0.1
2 1.6 15.4 76.0 6.4 0.6
3 0.7 3.7 23.7 61.0 11.0
≥4 0.0 0.8 4.2 13.5 81.5

Note: The top panel gives the distribution of the number of movie theaters per µSA from 2000 to 2009 from the
County Business Patterns for the 573 µSAs in our sample. The bottom panel displays the conditional probability
of transitioning from Nt−1 movie theaters in a µSA at time t− 1 (row) to Nt theaters at time t (column).

beginning in 2000 and ending in 2009. The top panel of Table 2 reports the

frequencies of the number of theaters across all of the µSA-year observations. No

theaters serve the market in about twenty percent of the observations, a single

theater serves about half of them, and about thirty percent of our observations have

more than one theater. The maximum number of theaters observed is nine, but only

4.9 percent of the observations have four or more. Each row of Table 2’s bottom

panel reports the observed frequencies of the number of theaters conditional on its

previous year’s value. Regardless of the initial number of theaters, the most common

outcome is for it to remain unchanged. Nevertheless, the number of theaters changes

in about 15 percent of the observed annual transitions.

In addition to this panel of producer counts, our estimation requires repeated

measurements of the demand indicator C and cross-sectional measurements of time-

invariant market characteristics X. The time-invariant market characteristics we

employ are median income, dummy variables indicating membership in the nine

U.S. Census Divisions, and an indicator for geographic preference diversity above

its median value. For C, we use annual population for each µSA as published by the

Census Bureau. For our sample from 2000 to 2009, the mean and standard deviation

of the annual population growth rate equal 0.34 percent and 1.11 percent. The

Census Bureau estimates these for non-census years using the most recent decennial

census as a baseline, so they have very large adjustments between 2009 and 2010.
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The mean and standard deviation of population growth between these two years

equals 1.5 percent and 3.1 percent. Since the measured changes between 2009 and

2010 disproportionately arise from differences in measurement methodology rather

than true population changes, we end our estimation sample in 2009.

4.2 Estimates

The NFXP procedure requires us to specify the demand process GC , the distribution

GW of the cost shocks, and the per period surplus function π as functions of a

finite vector of parameters. For the demand process, we follow Tauchen (1986).

We restrict Cr,t to a grid of 200 points equally spaced on a logarithmic scale with

distance d: c[1], c[2] = c[1] exp(d),. . . , c[200] = c[1] exp(199d). So that the growth of

Ct is approximately normally distributed with mean µC and variance σ2
C , we specify

the probability of transitioning to c[i] from c[j] for any i = 2, ..., 199 and j = 1, ..., 200

with

Pr[C ′ = c[i]|C = c[j]] = Φ

(
log c[i] + d

2
− log c[j] − µC
σC

)
−Φ

(
log c[i] − d

2
− log c[j] − µC
σC

)
.

The probabilities of transitioning to the grid’s end points equal

Pr[C ′ = c[1]|C = c[j]] = Φ

(
log c[1] + d

2
− log c[j] − µC
σC

)

and

Pr[C ′ = c[200]|C = c[j]] = 1− Φ

(
log c[200] − d

2
− log c[j] − µC
σC

)
,

respectively. The lower bound of the demand grid equals the minimum population

observed in our data, 11, 011, divided by 1.25. Analogously, the upper bound equals

the maximum population, 197, 912, multiplied by 1.25. For estimation, we replace

each observation of µSA population with the closest grid point.

The maximum number of movie theaters sustainable, ň, is fixed at the maximum

number of theaters observed in the data, nine. We specify the distribution GW of

the cost shocks to be normal with standard deviation ω and mean −ω2/2, so that

exp(Wr,t) has a log-normal distribution with unit mean and scale parameter ω. We
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fix the discount factor ρ at 1
1.05

. The specification for the producers’ surplus function

is

πr(n, c) = exp(β′X(1)
r )

c

n
k(n;X(2)

r ).

For this, we split the market characteristics in Xr into two sub-vectors, Xr ≡
(X

(1)
r , X

(2)
r ). Those in X

(1)
r affect the surplus log-linearly and include the logarithm

of median income (expressed as a deviation from the logarithm of the average median

income across our 573 µSAs) and dummies for all Census Divisions excluding New

England. The remaining characteristics in X
(2)
r interact with k and thereby affect

the toughness of competition in a general way.22 We both estimate the model

without heterogeneity in k across markets (trivial X
(2)
r ) and with k depending on

whether a market’s geographic preference diversity is above or below its median

value, 13.4 miles (X
(2)
r equal to an indicator for diversity exceeding 13.4 miles). We

set k(4) = k(5) = · · · = k(9) to accommodate the paucity of observations with four

or more theaters.

Table 3 reports the estimated parameters for two specifications, one that ignores

geographic preference diversity and another that takes it into account. The entire

estimation of both specifications required about thirty minutes using two Intel Xeon

E5-2699 v3 CPUs (released by Intel in 2014) on a single machine with C++ code.

In the first specification, the full-information maximum likelihood estimates

of the demand process’s drift and innovation standard deviation, 0.34 and 1.21

percent, are very close to the unconditional sample mean and standard deviation of

population growth, 0.34 and 1.11 percent. The coefficients in β are jointly and (with

the exceptions of those multiplying two division dummies) individually significant.

The mean sunk cost of entry, ϕ, is over fifty times the mean fixed cost of continuation.

However, one should not interpret this as a measure of the typical sunk cost paid

because entry only occurs when the realization of the cost shock is low. To calculate

more informative measures of fixed and sunk costs, we simulated the estimated

model for the New England Census Division. In the simulation, the average fixed

cost of continuation and sunk cost of entry paid were 0.47 and 0.92. The estimates of

all these parameters from the specification that accounts for geographic preference

22The monotonicity assumption in Section 2 requires the flow surplus to weakly decrease with
the number of firms. This assumption is satisfied at the maximum-likelihood estimates.
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diversity are similar to these baseline estimates.

In Table 4, we show that the model matches the summary statistics from Table 2

well. Using the estimated model with geographic preference diversity, we simulate

the evolution of each market’s population and the number of active theaters serving

it starting from its state in 2000, the first year in our data. The top panel of Table 4

gives the simulated distribution of theaters across market-year observations with

each estimate’s data analogue from Table 2 below it in gray. The estimated model

mimics the distribution of theaters nearly exactly. The table’s bottom panel reports

one-year transition rates from the model, again with their analogues from Table 2

in gray. The model reproduces the transition rates from a monopoly very closely.

Its most apparent shortcomings are the transitions rates from an empty market to

a monopoly (which is about 8 percentage points too large) and from a duopoly to

a monopoly (which is about 10 percentage points too small). Overall, the model

generates dynamics very similar to what we observe in the data.

Table 5 reports transformations of the estimates from Table 3 with a more

straightforward economic interpretation. The first row reports 1/(k(1) × 103), the

population in thousands that sets a monopolist’s current profit (the surplus earned

minus the fixed continuation cost incurred in a period) to zero in a New England

market with average median income when the fixed continuation cost equals one.

The baseline specification’s estimate of this is 26, 360 people. We expect that

concentrating customers’ locations increases a monopolist’s profit by making it easier

to simultaneously satisfy their geographic preferences. The estimates from the model

that accounts for geographic preference diversity support this prior. It takes 29, 420

people to support a monopolist in a µSA with geographic preference diversity above

the median and 25, 980 to support a monopolist in a µSA with preference diversity

below the median. A Wald test indicates that this difference is significant at the

five percent level.

The remaining rows of Table 5 report estimates of k(n + 1)/k(n), the share of

the surplus per consumer left after the addition of a competitor. These indicate

very tough competition. In the first specification, duopolists’ producers’ surplus per

consumer equals 54 percent of a monopolist’s. A third competitor decreases this

surplus to 82 percent of the duopolists’. In markets with four or more competitors,

the producers’ surplus per consumer further decreases to 77 percent of that in a

market with three firms. Altogether, adding three or more theaters to a market
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Table 3: Parameter Estimates

Geographic Preference Diversity
All µSAs Diversity > 13.4 miles Diversity ≤ 13.4 miles

k(1)× 104 0.38 0.34 0.38
(0.05) (0.05) (0.05)

k(2)× 104 0.21 0.20 0.18
(0.03) (0.03) (0.03)

k(3)× 104 0.17 0.17 0.14
(0.03) (0.03) (0.03)

k(4)× 104 0.13 0.14 0.10
(0.02) (0.02) (0.02)

ϕ 50.93 48.70
(9.77) (9.68)

Median Income 0.89 0.86
(0.17) (0.17)

Mid Atlantic -0.64 -0.60
(0.15) (0.15)

East North Central -0.48 -0.44
(0.16) (0.14)

West North Central 0.05 0.09
(0.16) (0.16)

South Atlantic -0.72 -0.70
(0.15) (0.15)

East South Central -0.51 -0.49
(0.16) (0.16)

West South -0.32 -0.28
(0.15) (0.15)

Mountain -0.08 -0.03
(0.15) (0.15)

Pacific -0.14 -0.11
(0.15) (0.15)

ω 1.75 1.74
(0.07) (0.08)

µC × 102 0.34 0.34
(0.00) (0.00)

σC × 102 1.21 1.21
(0.00) (0.00)

− logL 9200.38 9193.31
Number of Markets 573 287 286

Note: Standard errors are reported in parentheses. The data include 573 µSAs from 2000 to 2009, and ň equals
nine, which is the maximum of the number of active cinemas observed in the data. The values of k(5), . . . , k(9)
identically equal k(4). The first column reports estimates of a specification in which k(n) does not vary between
markets. The second and third columns report estimates of a specification in which k(n) differs between markets

with geographic preference diversity below and above its median value of 13.4 miles (X
(2)
r ). Both specifications

include the logarithm of median income (in deviation from the logarithm of the average median income across µSAs)

and Census Division dummies (excluding New England) as market characteristics in X
(1)
r . Please see the text for

further details.
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Table 4: Model/Data Comparisons of Frequencies and Transition Rates for Theaters

% of µSA-Year Observations
by Number of Movie Theaters

0 1 2 3 ≥ 4
model 19.1 48.8 22.1 6.4 3.7
data 19.3 50.6 19.4 5.8 4.9

% of Transitions Given Nt−1
↓ Nt−1/Nt → 0 1 2 3 ≥4

0 77.4 19.1 2.3 0.8 0.4
87.9 11.3 0.7 0.0 0.1

1 5.3 89.8 3.3 1.1 0.5
3.6 90.9 5.0 0.4 0.1

2 5.2 4.7 86.9 2.2 1.0
1.6 15.4 76.0 6.4 0.6

3 5.0 4.9 9.2 79.0 2.0
0.7 3.7 23.7 61.0 11.0

≥4 4.1 4.6 6.8 8.4 76.1
0.0 0.8 4.2 13.5 81.5

Note: The top panel shows how the estimated model fits the distribution of the number of movie theaters per µSA
from 2000 to 2009 from the County Business Patterns for the 573 µSAs in our sample. The bottom panel displays
the model fit for the conditional probability of transitioning from Nt−1 movie theaters in a µSA at time t− 1 (row)
to Nt theaters at time t (column). Figures printed in black refer to model predictions. Figures printed in gray refer
to the data.

Table 5: Estimates of the Toughness of Competition

Geographic Preference Diversity
All µSAs Diversity > 13.4 miles Diversity ≤ 13.4 miles

1/
(
k(1)× 103

)
26.46 29.54 26.06
(3.51) (4.00) (3.65)

k(2)/k(1) 0.54 0.60 0.48
(0.14) (0.14) (0.20)

k(3)/k(2) 0.82 0.84 0.78
(0.06) (0.06) (0.10)

k(4)/k(3) 0.77 0.79 0.67
(0.08) (0.08) (0.21)

Number of Markets 573 287 286

Note: This table is based on the model’s estimates as reported in Table 3. Standard errors are reported in
parentheses. The ratio 1/(k(1) × 103) can be interpreted as the population (in thousands of people) that sets
a monopolist’s current profit to zero in a New England market with average median income when the fixed cost
equals one. The ratio k(n+ 1)/k(n) is an indicator of the toughness of competition. Please see the text for further
details.
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with a single incumbent brings the surplus per customer down to 34 percent of its

monopoly value.

The theoretical literature on spatial differentiation overwhelmingly points to

heterogeneity of consumers’ locations as a source of market power. This leads us

to expect producers’ surplus to fall less rapidly with additional competition in the

high-diversity markets. The estimates from the second specification support this

conjecture. The ratios of the producers’ surplus k(n + 1)/k(n) are indeed higher

in high diversity than in low diversity markets. A Wald test indicates that these

differences are jointly statistically significant at the one percent level. This suggests

that entering theaters can lessen the toughness of competition with their location

choices.

These estimates of tough competition contrast with other evidence from this

industry. Davis (2005) provided evidence on competition for customers from

regressions of theaters’ admissions prices against indicators of the presence of other

theaters at various distances using data from large (relative to µSAs) U.S. cities in

the 1990s. Based on both across-market and within-market-over-time variation, he

concluded that

... the magnitude of the price-reducing effect of local competition

appears to be economically modest.

Prior research on the vertical relationships between theater owners and

their upstream suppliers, film distributors, has emphasized formal and informal

arrangements to manage the popcorn conflict over the final ticket price: Popcorn

and other concession sales are complements with theater attendance, and theater

owners keep all surplus from concession sales while splitting surplus from ticket sales

with the film distributor. Therefore, theater owners prefer lower ticket prices than

do distributors. The motion picture industry operates under a relatively unique

legal regime, under which the producers of films are legally barred from directly

influencing box-office pricing or vertically integrating with motion picture theaters.

Nevertheless, repeated interactions between distributors and theater owners might

give distributors indirect and extralegal control over box-office prices.23 Supporting

the view that film distributors constrain theaters’ pricing choices, Davis (2006) found

that
23Orbach and Einav (2007) reviewed the legal environment in which theater owners negotiate

with film distributors and set admissions prices.
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... the average theater owner would prefer to actually lower

admissions prices, if she could attract the same set of films.

Accordingly, we find it implausible that our estimates reflect fierce competition

for customers. Instead, we believe that adding theaters to a market increases

competition for film exhibition rights. Indeed, Gil and LaFontaine (2012) presented

some evidence that owners of Spanish theaters with higher local market shares get

better deals from film distributors.

4.3 Dynamic Implications

The estimates in Table 3 show that movie theaters face substantial sunk entry

costs and uncertainty about future profits. Consequently, nontrivial dynamic

considerations govern their entry and exit. This section explores the implied

dynamics of local movie theater markets by simulating the estimated model and

counterfactual versions of it. This is straightforward because its equilibrium is

unique and easy to calculate.

We first consider the dynamics of a single local market. We find that a market’s

initial number of active firms and initial demand state (population) have long-lasting

effects on its expected number of active firms. Figure 3 illustrates this for a New

England market with average median income, high geographic preference diversity,

and parameters equal to the estimates from the second specification in Table 3. Its

left panel sets initial demand in this market equal to the first quartile of the 2009

population distribution across µSAs (32, 570) and plots the evolution of the expected

number of firms from various initial numbers of firms. Its right panel sets initial

demand to the third quartile of that same distribution (65, 119). In both panels,

the dependence on the initial number of firms vanishes only after 10 to 15 years.

Sunk costs are key to this gradual adjustment; if we were to set them to zero in our

model, the expected number of firms would lose its relation to the initial number of

firms right away.24

Figure 3 also shows that the average number of firms serving the industry after

30 years depends on the market’s initial demand state. If the market starts at the

24Because incumbent firms can commit to serving the market in the next period before entry
takes place, their survival decisions are nontrivially dynamic even in the absence of sunk costs.
Nevertheless, the equilibrium without sunk costs closely mimics repeated static Nash play of a
one-shot entry game with no incumbency.
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Figure 3: Initial Conditions and the Evolution of the Expected Number of Firms
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Note: These panels report the evolution of the expected number of active firms implied by the model. The model
estimates are taken from the second specification reported in Table 3 and correspond to a high diversity market in
New England with median income equal to $34, 417, the average median income across µSAs. The left panel sets
the initial demand state to 32, 558, the first quartile of the 2009 population distribution across µSAs in our data.
The right panel sets it to 64, 119, the third quartile. The initial values for the number of active firms are marked as
such in both graphs.

first quartile of the population distribution, it will have on average 1.32 active firms

after 30 years (left panel); if it starts at the third population quartile, it will end

up with 2.20 firms (right panel). By construction the demand process is stationary,

so this dependence vanishes if given enough time. However, this process requires

well over 1,000 years. (This is not surprising, since we designed GC to approximate

the short-run behavior of a random walk.) Therefore, the usual mathematically-

convenient definition of the “long run”—the model’s ergodic distribution—is not

practically relevant for this application. Instead, we define the “long-run” with the

distribution of the number of active firms 30 years from the present. Based on this

definition and on the results in Figure 3, we conclude that the transition to the long

run requires between 10 and 15 years.

Figure 4 further explores how the long-run average number of firms depends on

initial demand. In its left panel, we plot the log of the market’s initial population

against the log of its expected number of active firms 30 years later. The black and

orange curves show this function for our estimated model and for a counterfactual
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Figure 4: Expected Number of Active Firms in the Long Run
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Note: These panels show the log of the expected number of active firms after thirty years as a function of the log
initial population. The black curves show this relationship for the estimated model. They are based on the second
specification reported in Table 3 and correspond to a market in New England with high geographic preference
diversity and median income equal to $34, 417 (the average median income across µSAs). In the left panel, the
orange curve corresponds to a counterfactual model without sunk costs. In this counterfactual, fixed costs are
raised to 1 + ϕ(1 − ρ). In the right panel, the red curve shows the relationship for the Netflix counterfactual, i.e.
a 25 percent reduction in consumers’ propensity to go to the movies. The green and blue curves correspond to the
counterfactuals that add JOAs to the Netflix counterfactual for all markets and duopolies, respectively. Since the
figure presents logarithms, negative values indicate that the expected number of firms is less than one.

variant without sunk costs.25 Their slopes give the percentage change in the number

of active firms for a one percent change in initial population. In both cases, for

large enough initial demand (and thus a high enough expected number of firms),

it takes more than a 1 percent increase in initial demand for a 1 percent increase

in the expected number of firms. This reflects our estimates of tough competition.

At very high initial demand states, the expected number of firms is close to the

maximum number of firms, even large increases in demand cannot entice further

entry, and the slopes taper off to zero. At low enough initial demand states, the

expected number of firms is close to zero and its elasticity with respect to demand

is larger. Comparing both curves shows that sunk costs magnify this effect; this

is consistent with Abbring and Campbell’s (2010) finding that the corresponding

25In the counterfactual, the sunk costs are annualized and added to the fixed costs (see the note
to Figure 4). Increasing the fixed costs further (so that the implied number of firms is closer to
that of the estimated model) shifts the orange line down without substantially changing its shape.
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Figure 5: Relative Changes in the Expected Number of Firms after a Netflix Shock
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Note: These panels report responses to the Netflix shock, a permanent 25 percent reduction in demand, for various
initial conditions. Specifically, they plot the differences between the counterfactual expected numbers of firms
following the Netflix shock and Figure 3’s baseline expected numbers of firms as a share of those same baseline
numbers. The model estimates are taken from the second specification reported in Table 3, and the simulations
and correspond to a market in New England with high geographic preference diversity and median income equal to
34, 417 (the average median income across µSAs). The left panel sets the initial demand state to 32, 558, the first
quartile of the 2009 population distribution across µSAs. The right panel sets it to 64, 119, the third quartile. The
initial values for the number of active firms are marked as such in both graphs.

option values shift the population thresholds at which firms exit down.

Next, we consider the market’s dynamic responses to a permanent 25 percent fall

in its consumers’ propensity to patronize its theaters. Since this demand reduction

could follow the screening of new movies by an internet streaming platform, we will

refer to it as the “Netflix shock.” Figure 5 plots the implied differences between

the counterfactual outcomes and Figure 3’s baseline outcomes as a share of those

baseline outcomes for the same initial conditions as in Figure 3. Like the baseline

outcomes themselves, the short-run responses to the Netflix shock depend strongly

on the initial conditions, with only their dependence on initial demand persisting

in the long run. With low initial demand, the market adjusts more quickly to

the Netflix shock if it starts with a large number of firms. Similarly, with high

initial demand, it adjusts more quickly if it starts with few firms. Eventually, the

market sheds around 20 percent of its theaters. This long-run loss is larger if initial

demand is low. Figure 4’s right panel confirms this: The gap between the log
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long-run expected number of active firms in the baseline (black) and in the Netflix

counterfactual (red) decreases with initial demand. One possible explanation for

this is that the reduction of competition dampens the negative effects of the Netflix

shock on the profits of surviving incumbents in high demand markets, which are

more likely to support two or more firms.

Our estimates contain no information on how consumers value variety, so we

cannot evaluate the social optimality of the number of active theaters or its

adjustment. However, our model does allow us to calculate the positive responses of

the industry to a policy intervention.26 To demonstrate this capability, we consider

one possible policy response to the Netflix shock: an antitrust exemption that allows

competing theaters to sign joint operating agreements (JOAs) that centralize the

acquisition of screening rights. Such a policy would be reminiscent of the 1970

Newspaper Preservation Act. This allowed newspapers, which have long been in

decline, to centralize the choices of advertising rates. We consider two variants of

this intervention. One allows agreements in all markets and the other restricts them

to duopolies.27 The latter would make sense if the benefits of variety are exhausted

with two competitors.

Figure 4’s right panel plots the long run log expected number of firms if

the Netflix shock is compensated with an all markets JOA (green) and if it is

compensated with a duopoly JOA (blue). Neither JOA has much impact if initial

demand is very low and markets are unlikely to support more than one theater. The

baseline JOA policy is increasingly effective as initial demand, and thus the expected

number of firms, increases. For large enough initial demand, it more than offsets

the Netflix shock. On the other hand, the duopoly JOA only just compensates for

the Netflix shock at intermediate levels of demand.

So far, we have focused on the dynamics of a single local market under various

initial conditions. We finish this section by exploring the (counterfactual) evolution

of our sample’s actual markets following a Netflix shock with and without a JOA at

the end of the sample period. To this end, we compute each market’s equilibrium

26If external information on the benefits of variety was available, appending it to this empirical
analysis would be straightforward.

27We operationalize the JOAs for all markets by setting k(n) to the estimated value of the
monopolist’s surplus k(1) for all n ≥ 2. We operationalize the JOAs for duopoly markets by
setting k(2) equal to the estimated value of k(1) while keeping k(n) unchanged and equal to their
estimated values for all n ≥ 3.
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Figure 6: Expected Number of Firms following a Netflix Shock (Averaged over Markets
by Demand Quartile)
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Note: These panels report the evolution of the expected number of active firms implied by the estimated model
and three counterfactual versions of it from 2010, averaged over the sampled markets by 2009 demand quartile. All
three counterfactual models involve a Netflix shock, a permanent 25 percent reduction in demand, in 2010. The
second and third counterfactual models add, respectively, an all markets and a duopoly JOA from 2010. The model
estimates are taken from the second specification reported in Table 3.
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outcome paths starting from its actual 2009 demand state and market structure

under various combinations of a Netflix shock and a JOA intervention in 2010.

Figure 6 summarizes the results by partitioning the markets into four subsamples,

one for each quartile of their 2009 population distribution, and plotting the average

expected number of firms in each such subsample against the years elapsed since

2010. As our findings for the long run effects on a single market suggest, a duopoly

JOA falls short of compensating the 25 percent Netflix shock in all years following

it and all four subsamples. The baseline JOA more than offsets the Netflix shocks

in all but the smallest markets, which benefit little from agreements among three

or more theaters.

To further quantify the JOAs’ effects, we have computed the sizes of the negative

demand shocks that are exactly offset by each JOA in terms of the resulting average

(across markets) long-run (30 year) expected number of firms. The baseline JOA

exactly offsets a 36 percent permanent reduction in demand. This makes sense,

given that it more than compensates for the 25 percent Netflix shock in at least

75 percent of the markets. In contrast, a duopoly JOA only offsets a 17 percent

demand reduction.

5 Conclusion

This paper’s dynamic oligopoly model is a version of Ericson and Pakes’s (1995)

framework in which firms face identical expected payoffs when making entry and

survival decisions. Like Ericson and Pakes, we focus on a game with complete

information. Unlike them, we allow for mixed strategies to ensure the existence of

a symmetric Markov-perfect equilibrium and leverage the implications of mixing to

simplify the equilibrium analysis and computation.

Applied research following Ericson and Pakes (as summarized by Doraszelski

and Pakes, 2007) has generally ensured the existence of an equilibrium in pure

strategies by augmenting Ericson and Pakes’s (1995) model with firm-specific

privately-observed shocks. In such augmented models, computing an equilibrium

can be challenging, and there is no guarantee that one in hand is unique.

Therefore, methods for estimating these models—such as Bajari, Benkard, and

Levin’s (2007) and Pakes, Ostrovsky, and Berry’s (2007) moment-based estimators

and Aguirregabiria and Mira’s (2007) pseudo maximum likelihood estimator—have
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avoided equilibrium calculation altogether. Instead, they assume that producers

in all sample markets employ the same equilibrium strategy, use this to estimate

firms’ expected behavior from their observed choices, and identify the structural

parameters of interest from the implied individual choice problems. This “two-step”

approach cleverly solves the problem of estimation when there could be equilibrium

multiplicity. However, unlike the maximum likelihood estimator of our model,

these two-step estimators are generally not efficient.28 Moreover, their asymptotic

distributions may be hard to compute; in fact, Bajari, Benkard, and Levin (p. 1349)

“believe it will typically be easiest to use subsampling or the bootstrap to estimate

standard errors.” Also, two-step methods require that the equilibrium choice (and

transition) probabilities are estimated in a first step without imposing constraints

that are inconsistent with equilibrium. Typically, this requires a nonparametric first

step, which may lead to poor statistical performance in finite samples, in particular

with large state spaces. Indeed, users of the two-step approach have had to coarsen

covariates before estimation so that they could estimate choice and transition

probabilities by pooling data across markets (e.g. Dunne, Klimek, Roberts, and

Xu, 2013). Finally, if equilibrium strategies vary with unobserved determinants

of markets, it is not straightforward to directly estimate these strategies, and

the implied choice probabilities, from observed behavior; in contrast, our NFXP

procedure can easily be adapted to allow for such heterogeneity.29

The two-step approach is useful for recovering structural parameters in models

with rich industry details, such as the vertical relations between cinemas and

movie distributors studied by Wozniak (2013). However, the obtained parameters

are rarely of interest per se but rather serve as intermediate inputs into the

analysis of environmental changes and policy interventions. For counterfactual

policy analysis in industries close to Chamberlinian monopolistic competition,

where single-agent choice problems approximate producers’ decisions well, a richly

specified model estimated using the two-step approach can provide much realism

(Campbell, 2010). Complementing the two-step approach, our model, which has a

28Pesendorfer and Schmidt-Dengler (2008) showed that these two-step estimators are asymptotic
(weighted) least squares (ALS) estimators, with suboptimal weights. They also provided an efficient
ALS estimator, which is a three-step estimator that first constructs the optimal weights using a
preliminary (two-step) consistent but inefficient estimator.

29See Footnote 10. Arcidiacono and Miller (2011) applied the expectation-maximization
algorithm to incorporate unobserved heterogeneity in two-step estimation.
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unique equilibrium, is well suited to evaluate counterfactual equilibrium outcomes

in oligopolistic markets where producers’ strategic interactions are overwhelmingly

important. Not every important question concerning dynamic oligopolies can be

cast within an environment with a unique equilibrium; and further methodological

developments for policy analysis with multiple equilibria (such as calculating

bounds on counterfactuals as in Eizenberg, 2014, and Reguant, 2015) are needed.

Nevertheless, our analysis has surmounted these theoretical and computational

obstacles for an empirical framework capable of empirically answering some of the

oldest questions in dynamic industrial organization.
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Appendices

A General Model

In this appendix, we show that our model of a local market is a special case of the

model studied by Abbring, Campbell, Tilly, and Yang (2018b) and translate their

main theoretical results to our model. We will refer to the two models as the special

model and the general model, respectively.

In the general model, firms’ profits in period t depend on the Y-valued vector

Yt. Figure 7 gives the general model’s recursive extensive form. Period t starts in

state (Nt, Yt), and each incumbent earns profits π̃(Nt, Yt). As in the special model,

all players have names giving the date of their entry opportunity and their position

in that date’s entry queue. In the entry stage of period t, firm (t, j) pays the

sunk cost ϕ̃(M j
t , Yt) upon entry, where again M j

t ≡ Nt + j. As before, a potential

entrant’s payoff from choosing inactivity equals zero. Progressing to the period t

survival stage, an active firm choosing survival incurs no cost during period t. The

expected profits from operating in period t + 1 subsume the special model’s costs

of continuation. At the end of the period, nature draws Yt+1 from the Markov

transition distribution G̃(· |Yt).
Abbring et al. restrict the general model’s payoffs as follows:

A1. ∃π̌ <∞ such that ∀(n, y) ∈ N× Y , −∞ < E [π̃(n, Y ′)|Y = y] < π̌;

A2. ∃ň ∈ N : ∀n > ň and ∀y ∈ Y , π̃(n, y) < 0;

A3. ∀(n, y) ∈ N× Y , π̃(n, y) ≥ π̃(n+ 1, y); and

A4. ∀(m, y) ∈ N× Y , 0 < ϕ̃(m, y) ≤ ϕ̃(m+ 1, y).

To cast the special model within this more general framework, set

Yt ≡ (Ct,Wt,Wt−1) ,

π̃(n, (c, w, w−1)) ≡ π(n, c)− ρ−1 exp(w−1),

ϕ̃(m; c, w, w−1) ≡ ϕ exp(w), and

G̃((c, w, w−1(|(Ct−1,Wt−1,Wt−2)) ≡

{
GC(c|Ct−1)GW (w) if Wt−1 ≤ w−1

0 otherwise.
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Period t Entry Stage (Sequential Moves)

Start with Nt incumbents and demand
state Yt (or initialize (N1, Y1) if t = 1).

a
(t,1)
E

Incumbents earn π̃(Nt, Yt).

Period t
Survival Stage,
NE,t = Nt

(t, 1) earns 0.

0

a
(t,2)
E

(t, 1) pays ϕ̃(Nt + 1, Yt).

1

...

(t, 2) pays ϕ̃(Nt + 2, Yt).

1

Period t
Survival Stage,
NE,t = Nt + 1

(t, 2) earns 0.

0

a
(t,̌)
E

Period t
Survival Stage,
NE,t = Nt+ ̌−1

(t, ̌) earns 0.

0

Period t
Survival Stage,
NE,t = Nt + ̌

(t, ̌) pays ϕ̃(Nt + ̌, Yt).

1

Period t Survival Stage (Simultaneous Moves)

Start with NE,t active firms
with names f1, f2, . . . , fNE,t

.

af1S

Post-entry value: ṽE(NE,t, Yt)

f1 earns 0.

1

af2S

0

f2 earns 0.

1

...

0

a
fNE,t

S

fNE,t
earns 0.

1

Nt+1 ∼ B
(
af1S , a

f2
S , . . . , a

fNE,t

S

)0

Yt+1 ∼ G(· |Yt)

Post-survival value: ṽS(Nt+1, Yt)

Period t + 1
Entry Stage

Assumptions:

• ∃π̌ <∞ : ∀(n, y) ∈ N× Y , −∞ < E [π̃(n, Y ′)|Y = y] < π̌.

• ∃ň ∈ N : ∀n > ň and ∀y ∈ Y , π̃(n, y) < 0.

• ∀(n, y) ∈ N× Y , π̃(n, y) ≥ π̃(n+ 1, y).

• ∀(m, y) ∈ N× Y , 0 < ϕ̃(m, y) ≤ ϕ̃(m+ 1, y).

• Firms discount future profits with factor ρ ∈ [0, 1).

Figure 7: The General Model’s Recursive Extensive Form

This reduces the general model to the main text’s special model, except that

the continuation cost exp(w) to a firm in state (c, w, w−1) is not incurred when

survival outcomes are realized but subsumed, with an appropriate adjustment for

discounting, in the next period’s expected profits:

E [π̃(n, Y ′)|Y = (c, w, w−1)] = E [π(n,C ′)|C = c]− ρ−1 exp(w).

Because the general model’s continuation cost, ρ−1 exp(w), cannot be avoided by

surviving firms and has a present value of exp(w), it is equivalent to a cost exp(w)

that is due right after survival, as in the special model.

The special model’s assumptions that π(n, c) ≥ 0 and E[π(n,C ′)|C = c] ≤ π̌,

ensure that A1 holds. The assumption that there exists ň such that π(n, c) = 0

for all n > ň implies A2. The assumption that π(n, c) ≥ π(n + 1, c) in the special

model directly gives A3. Finally, A4 generalizes the special model’s assumption of
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a constant ϕ > 0. Since ϕ̃(m, ·) may increase in m, the general model can have

an economic barrier to entry (McAfee, Mialon, and Williams, 2004). Although

adding a barrier to entry to the model’s theoretical analysis is straightforward,

our identification proof does rely on the special model’s constant specification for

ϕ̃(m, ·). Thus, the identification of barriers to entry remains an important open area

of inquiry.

Because our empirical model is a special case of Abbring et al.’s general model,

their theoretical results apply to it. In equilibrium, no firm will enter a market with

ň or more incumbents and incumbents will leave a market served by more than ň

firms with positive probability (Lemma 1). Moreover, the special model has a unique

symmetric Markov-perfect equilibrium that defaults to inactivity (Theorem 1). In

this equilibrium, the general model’s post-entry value ṽE(nE; c, w, w−1) equals the

special model’s value vE(nE, c, w). However, because of the (innocuous) difference

in the timing of the continuation cost, the general and special model’s post-survival

values differ by the continuation cost: ṽS(n′; c, w, w−1) = vS(n′, c)− exp(w).

Because ṽS(n′; c, w, w−1) is weakly decreasing in n′ (Lemma 2), so is vS(n′, c).

For given vS, there is a unique equilibrium survival rule aS that defaults to inactivity

(Corollary 1). In particular, aS(nE, c, w) = 0 if ṽS(1; c, w, w−1) = vS(1, c)−exp(w) ≤
0 (in the subcase that vS(1, c) = · · · = vS(nE, c) = exp(w), this follows from the

restriction that rules default to inactivity); aS(nE, c, w) equals the unique survival

probability a ∈ (0, 1] that makes firms indifferent between exit and survival,

0 =

nE∑
n′=1

(
nE − 1

n′ − 1

)
an
′−1 (1− a)nE−n′ ṽS(n′, (c, w, w−1))

= − exp(w) +

nE∑
n′=1

(
nE − 1

n′ − 1

)
an
′−1 (1− a)nE−n′ vS(n′, c),

if vS(nE, c) − exp(w) = ṽS(nE, (c, w, w−1)) ≤ 0 < ṽS(1, (c, w, w−1)) = vS(1, c) −
exp(w); and aS(nE, c, w) = 1 if ṽS(nE, (c, w, w−1)) = vS(nE, c)− exp(w) > 0.

Monotonicity of vS also implies that vE(nE, c, w) = max{0, ṽS(nE, (c, w, w−1))} =

max{0,− exp(w)+vS(nE, c)} (Corollary 2), so that vE(nE, c, w) is weakly decreasing

in nE. In turn, this ensures that EaE [vE(NE, c, w)|M = m,C = c,W = w] >

ϕ̃(m, (c, w, w−1)) = ϕ exp(w) if and only if vE(m, c, w) > ϕ exp(w), so that

aE(m, c, w) = 1 [vE(m, c, w) > ϕ exp(w)] (Abbring et al.’s Section 3.2).
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Finally, because ṽE is bounded (Abbring et al.’s Section 3.1), both vE and vS

are bounded.

B Likelihood

In this appendix, we construct a key building block of Section 3.3’s likelihood,

p(n′|n, c;Xr, θ), which gives the probability that in a market r, the number of firms

evolves from n to n′ when the demand state is given by c. Suppose that we have

obtained cost-shock thresholds for entry (wE,r) and sure survival (wS,r) by solving

the model for given parameters. There are four cases to consider.

Case I: n′ > n. If the number of firms increases from n to n′ > n, then it must

be profitable for n′ − n firms to enter, but not for n′ − n+ 1, i.e.

wE,r(n
′ + 1, c) ≤ Wr,t < wE,r(n

′, c).

The probability of this event is

p(n′|n, c;Xr, θ) = GW,r (wE,r(n
′, c))−GW,r (wE,r(n

′ + 1, c)) . (15)

Case II: 0 < n′ < n. If the number of firms decreases from n to n′ > 0, then Wr,t

must take a value w such that firms exit with probability aS,r(n, c, w) ∈ (0, 1). That

is, w must be high enough so that n firms cannot survive profitably, w ≥ wS,r(n, c),

but low enough for (at least) a monopolist to survive profitably, w < wS,r(1, c).

Given such a w, N ′ is binomially distributed with success probability aS,r(n, c, w)

and population size n. Hence, the probability of observing a transition from n to n′

with 0 < n′ < n equals

p(n′|n, c;Xr, θ) (16)

=

∫ wS,r(1,c)

wS,r(n,c)

(
n

n′

)
aS,r(n, c, w)n

′
(1− aS,r(n, c, w))n−n

′
gW,r(w) dw,

where gW,r is the density of GW,r. The integrand in (16) involves the mixing

probabilities aS,r(n, c, w) that are implicitly defined in (3). We avoid computing

these mixing probabilities directly by solving for the roots of (3) and perform a
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change of variable instead. We substitute for w the value ωr(a;n, c) that sets

aS,r (n, c, ωr(a;n, c)) = a for a given survival probability a ∈ (0, 1]. We then integrate

over a instead of over w. This gives

p(n′|n, c;Xr, θ) =

∫ 1

0

(
n

n′

)
an
′
(1− a)n−n

′ dωr(a;n, c)

da
gW,r (ωr(a;n, c)) da.

(17)

A simple rearrangement of (3) gives an explicit expression for ωr(a;n, c):

ωr(a;n, c) = log
n∑

n′=1

(
n− 1

n′ − 1

)
an
′−1 (1− a)n−n

′
vS,r(n

′, c).

Using this and its derivative dωr(a;n, c)/da, we obtain an analytic expression for the

integrand in (17). We then compute the integral with Gauss-Legendre quadrature.

Case III: n′ = 0,n > 0. If all firms exit, then either it is not profitable for even a

single firm to continue, Wr,t ≥ wS,r(1, c); or it is profitable for some firms but not for

all firms to continue, wS,r(n, c) ≤ Wr,t < wS,r(1, c), firms mix over exit and survival

as in Case II, and by chance none of the n firms survives. The probability of these

events’ union is

p(0|n, c;Xr, θ) (18)

= 1−GW,r (wS,r(1, c)) +

∫ wS,r(1,c)

wS,r(n,c)

(1− aS,r(n, c, w))n gW,r(w) dw.

As in Case II, the integral in the right-hand side of (18) can be computed by

substituting w = ωr(a;n, c), which gives∫ 1

0

(1− a)n
dωr(a;n, c)

da
gW,r (ωr(a;n, c)) da,

and applying Gauss-Legendre quadrature.

Case IV: n′ = n = 0. In this case, entry into an empty market is not profitable.

p(0|n = 0, c;Xr, θ) = 1−GW,r (wE,r(1, c)) (19)
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Case V: n′ = n,n > 0. If there is neither entry nor exit, then either no firm finds

it profitable to enter and all n incumbents find it profitable to stay, wE,r(n+ 1, c) ≤
Wr,t < wS,r(n, c); or the n incumbents mix as in Cases II and III, but by chance end

up all staying. The probability of these events is

p(n|n, c;Xr, θ) = GW,r (wS,r(n, c)]−GW,r (wE,r(n+ 1, c))

+

∫ wS,r(1,c)

wS,r(n,c)

aS,r(n, c, w)ngW,r(w) dw. (20)

The integral in (20) can be computed as in Cases II and III. This completes our

construction of p(n′|n, c;Xr, θ).

C Monte Carlo Experiments

In this appendix, we investigate the statistical properties and computational

performance of our estimation procedure with Monte Carlo experiments. For

these, we set the maximum number of firms entering any market to ň = 5, let

the cost shocks be log-normally distributed as in (8), fix the discount factor ρ at
1

1.05
, and interpret Ct as the number of consumers in the market. The statistical

process governing Ct has support on 200 grid points that are equally spaced on the

logarithmic scale. We use the discretization procedure described in Section 4. We

set µC = 0 and σC = 0.02.

Each Monte Carlo experiment consists of 1,000 synthetic samples. We use

four different sample sizes, each of them with ten time periods and between 100

and 1,000 ex ante identical markets. We compute the equilibrium and generate

each sample market by simulating the evolution of (N,C), beginning with a draw

from the model’s ergodic distribution. We then use each sample to estimate the

model’s parameters with the three step procedure presented in Section 3. (Since

this specification excludes variation in market characteristics, a single equilibrium

calculation can and does support the likelihood function calculations for all of

a sample’s observations.) We use the mean and standard deviation of the log

innovations of the generated C as starting values for the first step’s likelihood

function maximization. The starting parameter vector used for the second step

equals a vector of ones multiplied by one random variable uniformly distributed
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on [1, 10]. Dubé, Fox, and Su (2012) cautioned that an NFXP algorithm can

falsely converge when the tolerance criterion for the inner loop (which calculates the

equilibrium) is set too loosely relative to that of the outer loop (which maximizes the

likelihood function). We fix the convergence tolerance for the value function iteration

at a value that is two orders of magnitude smaller than that for the likelihood

maximization to avoid this potential pitfall.30

Table 6: Monte Carlo Results with Constant Surplus per Consumer

ř = 100 ř = 250 ř = 500 ř = 1,000

Averages of Estimates
k 1.502 1.501 1.501 1.501
ϕ 10.295 10.125 10.086 10.036
ω 0.995 0.998 1.000 1.000
µC × 102 0.000 -0.001 0.000 -0.000
σC × 102 1.999 2.000 1.999 1.999

Averages of Estimated Standard Errors
k 0.050 0.031 0.022 0.015
ϕ 2.959 1.804 1.263 0.885
ω 0.070 0.044 0.031 0.022
µC × 102 0.068 0.043 0.030 0.021
σC × 102 0.049 0.031 0.022 0.015

Monte Carlo Estimates of 95% Confidence Interval Coverage
k 0.947 0.946 0.946 0.952
ϕ 0.916 0.942 0.943 0.950
ω 0.936 0.954 0.947 0.953
µC 0.950 0.955 0.955 0.961
σC 0.945 0.944 0.952 0.949

Note: Results of a Monte Carlo experiment using the three step NFXP estimator to estimate the model with one
profit parameter (k) using 1,000 synthetic samples. The true value of k equals 1.5 and the true value of ϕ equals 10.
The true value of the standard deviation of the log costs (ω) equals 1. Demand is discretized into 200 states. The
demand process is governed by the drift parameter µC , which is set to zero, and the innovation standard deviation
σC , which equals 0.02. The bottom-most panel displays the fraction of samples for which the estimated 95 percent
confidence interval contained the parameter’s true value.

We first simulate data from a model where the surplus function is parameterized

as π(c, n) = (c/n)k for n ≤ ň and some fixed k > 0. This means that per consumer

surplus is constant in the number of active firms n for n ≤ ň. We set the true

values of k, ϕ, and ω, to 1.5, 10, and 1, respectively. The lower and upper bounds

of the demand grid equal 0.5 and 5. Table 6 reports the corresponding Monte Carlo

30We set the tolerance value to 10−10 for the inner loop and to 10−8 for the outer loop.
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Table 7: Monte Carlo Results with Decreasing Surplus per Consumer

ř = 100 ř = 250 ř = 500 ř = 1,000

Averages of Estimates
k(1) 1.809 1.806 1.802 1.802
k(2) 1.394 1.399 1.399 1.400
k(3) 1.195 1.198 1.199 1.199
k(4) 0.996 0.999 0.999 1.000
k(5) 0.892 0.899 0.900 0.899
ϕ 10.332 9.933 9.978 9.960
ω 0.985 0.992 0.997 0.998
µC × 102 -0.001 0.000 0.000 0.001
σC × 102 2.000 2.001 2.000 2.000

Averages of Estimated Standard Errors
k(1) 0.095 0.057 0.040 0.028
k(2) 0.094 0.058 0.041 0.029
k(3) 0.078 0.049 0.034 0.024
k(4) 0.075 0.047 0.033 0.023
k(5) 0.089 0.054 0.038 0.027
ϕ 3.832 2.075 1.457 1.023
ω 0.086 0.053 0.037 0.026
µC × 102 0.068 0.043 0.030 0.021
σC × 102 0.049 0.031 0.022 0.015

Monte Carlo Estimates of 95% Confidence Interval Coverage
k(1) 0.959 0.946 0.953 0.955
k(2) 0.942 0.934 0.939 0.931
k(3) 0.940 0.945 0.939 0.948
k(4) 0.947 0.938 0.942 0.947
k(5) 0.939 0.960 0.943 0.956
ϕ 0.878 0.925 0.942 0.940
ω 0.924 0.938 0.957 0.957
µC 0.956 0.959 0.964 0.951
σC 0.956 0.952 0.948 0.948

Note: Results of a Monte Carlo experiment using the three step NFXP estimator to estimate the model with five
profit parameters (k(1), k(2), . . . , k(5)) using 1,000 synthetic samples. The true value of (k(1), k(2), . . . , k(5)) equals
(1.8, 1.4, 1.2, 1.0, 0.9) and the true value of ϕ equals 10. The true value of the standard deviation of the log costs
(ω) equals 1. Demand is discretized into 200 states. The demand process is governed by the drift parameter µC ,
which is set to zero, and the innovation standard deviation σC , which equals 0.02. The bottom-most panel displays
the fraction of samples for which the estimated 95 percent confidence interval contained the parameter’s true value.
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experiments’ results. Its first panel gives the averages of the 1,000 estimates for each

parameter, and it shows that the NFXP estimator is essentially without bias, even

for the sample with only 100 markets. The second panel reports the averages of the

estimated standard errors. For the sample with 100 markets, the average estimated

standard error for the estimate of the sunk cost is 2.958. Therefore, we would

expect a 95 percent confidence interval to approximately correspond to (4, 16). This

is possibly too wide for empirical usefulness, but the other estimates’ standard errors

are relatively small. As expected, increasing the sample size decreases the standard

errors approximately at the rate
√
ř. So for ř = 500 the standard error on ϕ is

only 1.254. The table’s final panel reports the Monte Carlo estimates of 95 percent

confidence intervals’ coverage probabilities. These are all within 2.0 probability

points of their common nominal value. Apparently, the estimated standard errors

provide accurate inference.

For our second set of simulations we use the same parameterization as before

except that we define the flow surplus function as π(c, n) = (c/n)k(n), where

(k(1), k(2), k(3), k(4), k(5)) is set to (1.8, 1.4, 1.2, 1.0, 0.9). This specification has

the average surplus per consumer decrease in the number of active firms.31 Table

7 reports the results of the corresponding Monte Carlo experiments. Again, all

parameter estimates are essentially without bias, the estimated standard errors are

small enough to be empirically useful, and the 95 percent confidence intervals have

coverage probabilities close to their common nominal value. To check whether the

estimator is able to distinguish a model with a decreasing per consumer surplus from

a model with a constant surplus, we compute a likelihood ratio test for each sample.

We can reject the null hypothesis k(1) = · · · = k(5) at the 95 percent confidence level

in all of our synthetic samples regardless of the sample size. Overall, we conclude

that the NFXP procedure has the potential to be empirically useful.

Since our equilibrium computation algorithm finds fixed points to relatively low

dimensional contraction mappings, one would expect the estimation procedure to

be relatively fast. Table 8 shows that this in fact is the case. On average, the

computation of the three step maximum likelihood estimator takes between 15 and

31These values generate a realistic distribution of firms per market. No firm is active in about
5 percent of the markets, a monopolist serves about 30 percent of the markets, and five firms
serve about 5 percent of the markets. In contrast, the previous specification with constant per
consumer surplus generates a distribution with an additional local mode at five firms (the value of
ň), because competition does not get “tougher” when the number of firms increases.
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Table 8: Computational Performance

ř = 100 ř = 250 ř = 500 ř = 1,000

one entry cost parameter, one profit parameter
time per run 21.52 19.64 21.09 20.09

one entry cost parameter, five profit parameters
time per run 33.02 29.03 35.37 30.92

Note: Average computational performance of the NFXP estimators in the synthetic samples. The estimator is
implemented in C++ and runs as a single thread on an Intel Xeon CPU E5-2699 v3 with 2.30GHz.

a little over 20 seconds depending on the specification. This is much faster than the

estimation time reported above for our application. The speed increase is entirely

attributable to the absence of covariates, which requires computing an equilibrium

for each market and each trial value of the parameters. One unexpected feature

of Table 8 is that computation time can decrease as the number of markets grows.

We speculate that this happens because larger sample sizes smooth the objective

function and thereby reduce the number of likelihood function evaluations required

for optimization.

Su and Judd’s (2012) results suggest that we might be able to improve on the

already rapid performance of our estimation procedure by using a mathematical

programming with equilibrium constraints (MPEC) procedure in lieu of a NFXP

algorithm. The MPEC estimator treats the value functions as a vector of nuisance

parameters to be estimated subject to the equilibrium constraints implied by the

sequence of Bellman equations. Thereby, MPEC omits the NFXP procedure’s inner

loop. Su and Judd compared the MPEC and NFXP procedures in a simulation

study of Rust’s (1987) bus engine renewal problem and concluded that MPEC is

much faster. However, Iskhakov, Lee, Rust, Schjerning, and Seo (2016) pointed

out that a more efficient version of the NFXP procedure, as originally proposed by

Rust, is as fast as the MPEC procedure. Because results for a single-agent renewal

problem do not necessarily carry over to our game, it is instructive to compare our

NFXP results to those from an application of the MPEC procedure.

We only use the MPEC method in the second step of the three-step procedure,

since the first step is independent of the estimation procedure used in the second
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step and the third step essentially takes no time. Thus, if there are substantial

differences between MPEC and the NFXP, these differences will be most visible in

the second step of the three-step-procedure.

We implemented the MPEC estimator of our model in C++. We provided

analytical derivatives for the objective function and the constraint Jacobian, and

we explicitly accounted for the sparsity pattern of the constraint Jacobian. The

Hessian was approximated using the Quasi-Newton BFGS method. The objective

function was optimized using the commercial optimizer Knitro.

In contrast to Su and Judd, we found the MPEC estimator to be considerably

slower than the NFXP estimator. We obtained this result under very favorable

starting values that fall within 10 percent of the truth. For these starting values,

the MPEC estimator always calculated estimates practically indistinguishable from

those of our NFXP estimator but was 40 times slower. We can only speculate as

to why the MPEC estimator performs relatively poorly compared to the NFXP

estimator. Su and Judd emphasized the usefulness of passing “sparsity patterns”

to the optimizer, which indicate which derivatives of the constraints with respect

to the nuisance parameters are identically zero. In their application to Rust’s bus-

engine replacement problem the constraint Jacobian is relatively sparse. Only 7

percent of its entries are non-zero. In our application, the constraint Jacobian is

about 60 percent dense.32 This is partly driven by the fact that the transition

probability matrix for the demand state is fully dense. MPEC’s relatively poor

performance in our application also might arise from the computation of the

objective function’s gradients with respect to the nuisance parameters, which

requires repeatedly retrieving information from large and relatively dense matrices.

These computational challenges might not be insurmountable, but our NFXP

estimator seems to balance the costs of programmer time and execution time well.

D Heterogeneity and Industry Dynamics

Since the pioneering empirical work of Dunne, Roberts, and Samuelson (1988), a

rich literature has arisen that documents high producer turnover within narrowly-

defined industries and measures its role in aggregate productivity growth. Our

32For the specification that corresponds to the Monte Carlo simulation reported in Table 7,
there are 603, 000 nonzeros in the Jacobian (out of 1, 007, 000 entries).
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analysis focuses on a very different (and somewhat older) question: How does

changing market size change the number of producers and the profits they earn?

This question does not obviously require consideration of producer heterogeneity,

and indeed both Bresnahan and Reiss (1990) and Campbell and Hopenhayn (2005)

examined it in the context of models with homogeneous firms. However, just because

it is convenient to treat all producers symmetrically does not mean it is appropriate

to do so. Persistent differences between firms might substantially impact their entry

and continuation decisions and thereby bring the results of applying our model

into question. At the same time, the simple observation that producers differ on

some observable dimensions does not invalidate an approach like ours that treats

them symmetrically. Our model only requires that producers’ expected profits are

identical, because expected profits govern entry and exit decisions. This leaves

a great deal of room for incorporating observable transitory heterogeneity across

producers. For example, the theaters in our data might always have very different

sizes (measured with e.g. sales) if the (randomly-chosen) theater with the highest-

quality film (the “blockbuster”) attracts all quality-sensitive consumers and the

remaining quality-insensitive consumers split themselves equally across theaters. As

long as blockbusters do not systematically go to one particular theater, such within-

period heterogeneity is irrelevant for producers’ entry and continuation decisions.

Whether abstracting from producer heterogeneity within a local market is a

helpful simplification or a fatal error is ultimately an empirical question. The

common observation of high producer turnover at the national level might seem to

settle that question, since our model trivially predicts that entry and exit never occur

simultaneously. However, only turnover within µSAs is relevant for the question of

whether the model can be usefully applied to our sample of local markets.33 We

33We estimate that the entry and exit rates of theaters between the 2002 and 2007 Economic
Censuses were at least 9.2 percent and 11.3 percent. Therefore, a more thorough investigation
would almost certainly find that the Motion Picture Theaters industry is no exception to the
empirical rule of high producer turnover at the national level. We calculated these lower bounds
using reports of the number of establishments in both years’ Economic Censuses, 4979 and 4879,
and the number of establishments in the 2002 Census that did not operate for all of 2002. We
counted these as exits. Since exits could also occur in any of the inter-census years, this is a lower
bound. The 11.3 percent exit rate equals 100 × 2 × 555/(4979 + 4879) percent. To get the entry
rate, we subtracted the number of establishments that were active for all of 2002 from the number
of establishments in the 2007 Economic Census. The result, 455, is a lower bound on the number of
entrants between the two censuses. The 9.2 percent entry rate equals 100× 2× 455/(4979 + 4879)
percent. The data underlying these calculations can be found at http://factfinder.census.

gov/bkmk/table/1.0/en/ECN/2007_US/51SSSZ1.
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seek to settle this question for the theaters in our data set by examining directly

how producer heterogeneity influences the evolution of the number of producers.

Our homogeneity assumption requires measures of producer heterogeneity to have

insubstantial effects in a forecasting model of the number of firms that accounts for

time-invariant market characteristics, the realization of demand (population in our

case), and the lagged values of the number of producers. To investigate this, we

have estimated Poisson regression models with the number of firms in year t as the

dependent variable. The independent variables include the logarithm of population

in year t − 1 and its square, dummy variables for the number of theaters in year

t − 1, calendar-year dummies, census-division dummies, linear and squared terms

in median income measured in 2000, and the logarithms of geographic preference

diversity and geographic isolation.

In one of the forecasting models, we also include a particular measure of

heterogeneity. If we denote the size of the jth active producer in market r in year t

with Qj,r,t, then this can be written as

Hr,t ≡
1

Nr,t

Nr,t∑
j=1

Q2
j,r,t

/( 1

Nr,t

Nr,t∑
j=1

Qj,r,t

)2

.

This is the uncentered second moment of producer size divided by its first moment

squared. It can be easily shown that Hr,t equals the Herfindahl-Hirschman Index

(HHI) multiplied by Nr,t. Since the HHI obtains its minimum value of 1/Nr,t when

producers have equal sizes, Hr,t equals the multiplicative “correction” one must

apply to 1/Nr,t to get the true HHI. Its minimum value (obtained with identical

producers) is one. By including this measure in our forecasting model, we give the

data the opportunity to indicate whether or not producer heterogeneity substantially

impacts the evolution of Nr,t. If our structural model were literally true, then we

could exclude Hr,t−1 from the forecasting model without cost. On the other hand, we

expect Hr,t−1 to substantially improve forecasts of Nr,t generated from other models

of industry dynamics. For example, in models of increasing market dominance,

such as that in Cabral (2002), heterogeneity increases over time on average, which

increases the incentive for lagging producers to exit. Similarly, the introduction of

a big-box retailer to a market increases producer heterogeneity and induces smaller
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absolute difference between forecasts of the number of theaters

fr
ac

ti
on

of
sa

m
p
le

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Figure 8: Histogram of the Absolute Differences between Model Forecasts

Note: The figure plots the fraction of market-year observations for which the absolute difference of the two models’
predicted (expected) values of the number of theaters falls into bins with width equal to 0.01 theater. Both models
are Poisson regressions that include calendar-year dummies, census-division dummies, linear and squared terms in
the previous year’s population, linear and squared terms in median income measured in 2000, the logarithms of
geographic preference diversity and geographic isolation (as defined in the text), and indicators for the number of
theaters serving the market in the previous year. One model also includes the logarithm of Hr,t−1, heterogeneity’s
contribution to the HHI in the previous year. Both models are estimated with the sample of 1, 572 observations
from 2001 through 2009 with Nr,t−1 ≥ 2.

competitors to exit, so a high value of Hr,t−1 should predict a reduction in Nr,t.
34

In our data, we measure each theater’s size with the midpoint of the employment

size category to which it belongs in the year’s mid-March pay period. The County

Business Patterns always reports this for each theater without identifying the

theater itself. We include the logarithm of Hr,t−1 in our forecasting model, so its

estimated coefficient can be interpreted as an elasticity. So that we do not bias

the forecasting model towards finding that heterogeneity is unimportant, we include

only observations for which Nr,t−1 ≥ 2. Over our ten year sample, there are 1, 572

such observations. Over them, the mean value of Hr,t−1 is 1.31, and its standard

deviation is 0.30. The estimated coefficient on the logarithm of Hr,t−1 equals −0.096,

and its standard error is 0.036. Therefore, Hr,t−1 has a statistically-significant and

34See Haltiwanger, Jarmin, and Krizan (2010) for evidence of this effect of big-box retailers on
their smaller competitors.
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negative effect on Nr,t. However, this effect is economically small. We can see this

in two ways. First, we note that the logarithm of Hr,t−1 has a standard deviation

of 0.21 in our sample. Therefore, a one-standard deviation increase in this measure

of heterogeneity decreases the predicted number of firms by only about 2 percent.

Second, we estimated the same forecasting model but excluding the logarithm of

Hr,t−1 and calculated forecasts using it and our complete model. Figure 8 gives the

histogram of the absolute differences between the two models’ forecasts. The median

absolute difference between the two models’ predictions is 0.030 theaters, and the

mean absolute difference is 0.036 theaters. In comparison, the mean forecasted

values for both models equal 2.46 theaters. Since there is no economically significant

effect of producer heterogeneity on the evolution ofNr,t, we conclude that abstracting

from producer heterogeneity is a helpful simplification rather than a fatal error.
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