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Abstract

This paper develops a simple model of firm entry, competition, and exit

in oligopolistic markets. It features toughness of competition, sunk entry

costs, and market-level demand and cost shocks, but assumes that firms’

expected payoffs are identical when entry and survival decisions are made.

We prove that this model has an essentially unique symmetric Markov-perfect

equilibrium, and we provide an algorithm for its computation. Because

this algorithm only requires finding the fixed points of a finite sequence of

contraction mappings, it is guaranteed to converge quickly.
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1 Introduction

In this paper, we present a model of firm entry, competition, and exit in oligopolistic

markets. It features toughness of competition, sunk entry costs, and market-level

demand and cost shocks. We allow firms to use mixed strategies and close the model

by focusing on symmetric Markov-perfect equilibria. The model’s key simplifying

assumption is that firms’ expected payoffs are identical when entry and survival

decisions are made. Using this and the equilibrium implications of mixed strategies

for payoffs, we construct an algorithm for equilibrium computation that calculates

the fixed points of a finite sequence of low-dimensional contraction mappings. Since

it relies only on contraction mappings, the algorithm is guaranteed to calculate

an equilibrium. We prove that adding a competitor cannot increase incumbents’

equilibrium continuation values. This result in turn ensures that the symmetric

equilibrium calculated by our algorithm is essentially unique. The algorithm

converges sufficiently quickly to be embedded in a nested fixed point estimation

procedure and used for large-scale computational experiments.

Our model can be viewed as a special case of Ericson and Pakes’s (1995) Markov-

perfect industry dynamics framework. Ericson and Pakes focused on symmetric

equilibria in pure strategies, but Doraszelski and Satterthwaite (2010) showed that

such equilibria might not exist in their original framework. To address this problem,

Gowrisankaran (1999) added privately-observed firm-specific shocks to the costs of

continuation; and Doraszelski and Satterthwaite provided sufficient conditions for

such an augmented framework to have a symmetric equilibrium in pure strategies.

Research following Ericson and Pakes (summarized by Doraszelski and Pakes, 2007)

has generally adopted this augmented version of their framework.

We instead return to Ericson and Pakes’s original complete-information

approach. We show that the firm-specific shocks that guarantee existence of

an equilibrium in pure strategies in the augmented framework obscure a useful

consequence of firms employing mixed strategies. In equilibrium, firms earn

the value of the outside option (zero) whenever they nontrivially randomize

over exit and survival. Therefore, symmetric equilibrium payoffs to incumbents

contemplating survival equal either zero or the value of all incumbents choosing

certain continuation. This insight allows us to calculate continuation values

from some nodes of the game tree without knowing everything about the game’s
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subsequent play. Combining this insight with a demonstration that continuation

values weakly decrease with the number of active firms yields the contraction

mappings that we use both to calculate the equilibrium and to demonstrate its

uniqueness. In contrast, there is no guarantee that the augmented Ericson and

Pakes framework has a unique equilibrium; and computing even one of its equilibria

can be onerous.

Earlier research similarly exploited the structure of specific games to enable their

theoretical and computational analysis. Abbring and Campbell (2010) considered

a dynamic oligopoly model like ours, but assumed that incumbent firms make

continuation decisions sequentially in the order of their entry. Moreover, they

restricted attention to Markov-perfect equilibria in which older firms always outlive

their younger rivals, which they called “last-in first-out” dynamics. Our equilibrium

characterization and computation rely neither on sequential timing assumptions nor

on a restriction to last-in first-out dynamics.

Another strand of the literature applied backward induction to compute the

equilibria of dynamic directional games (e.g. Cabral and Riordan, 1994; Judd,

Schmedders, and Yeltekin, 2012). Iskhakov, Rust, and Schjerning (2016) systemized

this familiar procedure into an algorithm for computing all these games’ equilibria.

In the games considered, the state space can be partially ordered using primitive

restrictions on state transitions: State B comes after state A if B can be reached from

A but not the other way around. Their algorithm iterates backwards through this

partially ordered set of states. Transitions from states considered in a given iteration

to states considered in later iterations are impossible, so the algorithm can calculate

equilibrium outcomes and continuation values recursively. Our algorithm similarly

iterates over an ordered partition of our game’s state space. However, our game

is not directional and in each iteration transitions to states not yet visited by our

algorithm are possible. Instead of exploiting the directionality of state transitions

hardwired into the primitives of Iskhakov, Rust, and Schjerning’s framework, we

rely on the fact that the expected symmetric equilibrium payoff in any survival

subgame in which firms exit with positive probability must be zero. This allows

us to order state D after state C if state D can be reached from state C but the

opposite transition requires firms to choose exit with positive probability.
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2 The Model

Consider a market in discrete time indexed by t ∈ N ≡ {1, 2, . . .}, in which

firms make entry and exit decisions. In period t, firms that have entered in the

past and not yet exited serve the market. Each firm has a name f ∈ F ≡
F0∪(N× {1, 2, . . . , ̌}) . Initial incumbents have distinct names in F0, while potential

entrants’ names are from N × {1, 2, . . . , ̌}. The first component of a potential

entrant’s name gives the period in which it has its only opportunity to enter the

market, and the second component gives its position in that period’s queue of ̌ <∞
firms. Aside from the timing of their entry opportunities, the firms are identical.

Figure 1 details the actions taken by firms in period t and their consequences

for the game’s state at the start of period t + 1. We call this the game’s

recursive extensive form. For expositional purposes, we divide each period into

two subperiods, the entry and survival stages. Play in period t begins on the left

with the entry stage. If t = 1, nature sets the number N1 of firms serving the

market in period 1 and the initial demand state Y1. If t > 1, these are inherited

from the previous period. We use Y to denote the support of Yt. Although we

consistently refer to Yt as “demand,” it can encompass any market characteristics

that may affect, but are not affected by, firms’ decisions. For instance, Yt may be

vector-valued and include cost shocks. It follows a first-order Markov process.

Each incumbent firm earns a profit π(Nt, Yt) from serving the market, and all

firms value future profits and costs with the discount factor ρ ∈ [0, 1). We assume

that

A1. ∃π̌ <∞ such that ∀(n, y) ∈ N× Y , −∞ < E [π(n, Y ′)|Y = y] < π̌;

A2. ∃ň ∈ N : ∀n > ň and ∀y ∈ Y , π(n, y) < 0; and

A3. ∀(n, y) ∈ N× Y , π(n, y) ≥ π(n+ 1, y).

Here and throughout; we denote the next period’s value of a generic variable Z

with Z ′, random variables with capital Roman letters, and their realizations with

the corresponding small Roman letters. The first assumption ensures that expected

discounted profits (values) in all entry or survival decision nodes are bounded from

above. Because firms will, in equilibrium, limit losses by exiting, this will allow us to

restrict our analysis of equilibrium values to the space of bounded functions. We will
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Period t Entry Stage (Sequential Moves)

Start with Nt incumbents and demand
state Yt (or initialize (N1, Y1) if t = 1).

a
(t,1)
E

Incumbents earn π(Nt, Yt).

Period t
Survival Stage,
NE,t = Nt

(t, 1) earns 0.

0

a
(t,2)
E

(t, 1) pays ϕ(Nt + 1, Yt).

1

...

(t, 2) pays ϕ(Nt + 2, Yt).

1

Period t
Survival Stage,
NE,t = Nt + 1

(t, 2) earns 0.

0

a
(t,̌)
E

Period t
Survival Stage,
NE,t = Nt+ ̌−1

(t, ̌) earns 0.

0

Period t
Survival Stage,
NE,t = Nt + ̌

(t, ̌) pays ϕ(Nt + ̌, Yt).

1

Period t Survival Stage (Simultaneous Moves)

Start with NE,t active firms
with names f1, f2, . . . , fNE,t

.

af1S

Post-entry value: vE(NE,t, Yt)

f1 earns 0.

1

af2S

0

f2 earns 0.

1

...

0

a
fNE,t

S

fNE,t
earns 0.

1

Nt+1 ∼ B
(
af1S , a

f2
S , . . . , a

fNE,t

S

)0

Yt+1 ∼ G(· |Yt)

Post-survival value: vS(Nt+1, Yt)

Period t + 1
Entry Stage

Assumptions:

• ∃π̌ <∞ : ∀(n, y) ∈ N× Y , −∞ < E [π(n, Y ′)|Y = y] < π̌.

• ∃ň ∈ N : ∀n > ň and ∀y ∈ Y , π(n, y) < 0.

• ∀(n, y) ∈ N× Y , π(n, y) ≥ π(n+ 1, y).

• ∀(m, y) ∈ N× Y , 0 < ϕ(m, y) ≤ ϕ(m+ 1, y).

• Firms discount future profits with factor ρ ∈ [0, 1).

Figure 1: The Model’s Recursive Extensive Form

use the second assumption to bound the number of firms that will participate in the

market simultaneously. It is not restrictive in empirical applications to oligopolistic

markets. The third assumption requires the addition of a competitor to reduce

weakly each incumbent’s profit. That is, what Sutton (1991) labelled the toughness

of competition must dominate any complementarities between firms’ activities.

After incumbents earn their profits, entry may occur. The period t entry cohort

consists of firms with names in {t} × {1, . . . , ̌}. These firms make their entry

decisions sequentially in the order of their names’ second components. We denote

firm f ’s entry decision with afE ∈ {0, 1}. A firm in the j’th position of the current

period’s entry queue that enters pays the sunk cost ϕ(Nt + j, Yt). This satisfies

A4. ∀m ∈ N and ∀y ∈ Y , 0 < ϕ(m, y) ≤ ϕ(m+ 1, y).

If ϕ(m, y) < ϕ(m+ 1, y), then the m+ 1’th firm faces an economic barrier to entry

(McAfee, Mialon, and Williams, 2004). A firm choosing not to enter earns a payoff

of zero and never has another entry opportunity. Such a refusal to enter also ends
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the entry stage, so firms remaining in this period’s entry cohort that have not yet

had an opportunity to enter never get to do so.

The total number of firms in the market after the entry stage equals NE,t,

which sums the incumbents with the actual entrants. Denote their names with

f1, . . . , fNE,t
. In the survival stage, these firms simultaneously choose probabilities

of remaining active, af1S , . . . , a
fNE,t

S ∈ [0, 1].1 Subsequently, all survival outcomes are

realized independently across firms according to the chosen Bernoulli distributions.

Firms that exit earn a payoff of zero and never again participate in the market. The

Nt+1 surviving firms continue to the next period, t+ 1.2 To end the period, nature

draws a new demand state Yt+1 from the Markov transition distribution G(· |Yt).
The timing of our game is similar to that in Ericson and Pakes (1995). Like

them, we allow for sequential entry.3 Moreover, like Ericson and Pakes, and unlike

Abbring and Campbell (2010), we assume simultaneous survival decisions. Because

we allow for mixed survival rules, this may lead to excessive exits. Since entry

precedes exit, potential entrants cannot take immediate advantage of such “exit

mistakes” and thereby outmaneuver incumbents. This is not so relevant to Ericson

and Pakes, who restrict strategies to be pure (at the expense of losing equilibrium

existence; see Doraszelski and Satterthwaite, 2010). To establish the robustness of

our results to the game’s timing assumptions, we considered a variant of our model

in which at most one firm enters each period and entry and survival decisions are

all taken simultaneously. In this paper’s online supplement, we demonstrate that

this alternative game has a unique equilibrium in which potential entrants never

displace incumbents; and we provide an algorithm for its rapid calculation.

1We do not explicitly model the firms’ randomization devices. A more complete development
would assign each active firm an independent uniformly-distributed random variable and have each
firm choose a set of realizations that direct it to survive. In this extension, a survival probability
equal to one could indicate either that the firm chooses to exit never or that it chooses to exit
whenever its random variable falls into a particular non-empty set of measure zero. Throughout
this paper, we will assume the former and interpret aS = 0 and aS = 1 as dictating certain exit
and survival.

2The assumption that entrants immediately contemplate exit might seem strange, but exit
immediately following entry never occurs in equilibrium. Furthermore, this timing assumption
removes an unrealistic possibility. If entrants did not make these continuation decisions, then they
could effectively commit to continuation. This would allow an entrant to displace an incumbent
only by virtue of this commitment power.

3See their page 60: “We assume that, in each period, ex ante identical firms decide to enter
sequentially until the expected value of entry falls sufficiently to render further entry unprofitable.”
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3 Equilibrium

We assume that firms play a symmetric Markov-perfect equilibrium, a subgame-

perfect equilibrium in which all firms use the same Markov strategy.

3.1 Symmetric Markov-Perfect Equilibrium

A Markov strategy maps payoff-relevant states into actions. When a potential

entrant (t, j) makes its entry decision in period t, the payoff-relevant states are

the number of firms committed to activity in the next period if firm (t, j) chooses

to enter, M j
t ≡ Nt + j, and the current demand Yt. We collect these into the vector

(M j
t , Yt) ∈ H ≡ N × Y . Similarly, we collect the payoff-relevant state variables of

a firm contemplating survival in period t in the H-valued (NE,t, Yt). Since survival

decisions are made simultaneously, this state is the same for all active firms. A

Markov strategy is a pair of functions aE : H → {0, 1} and aS : H → [0, 1]. The entry

rule aE assigns a binary indicator of entry to each possible state. Similarly, aS gives a

survival probability for each possible state. Since time and firms’ names themselves

are not payoff-relevant, we henceforth drop the subscript t and the superscript j

from the payoff-relevant states.

In a symmetric Markov-perfect equilibrium, a firm’s expected continuation value

at a particular node of the game can be written as a function of that node’s payoff-

relevant state variables. Two of these value functions are particularly useful for

the model’s equilibrium analysis: the post-entry value function, vE, and the post-

survival value function, vS. The post-entry value vE(NE, Y ) equals the expected

discounted profits of a firm in a market with demand state Y and NE firms just

after all entry decisions are made. The post-survival value vS(N ′, Y ) equals the

expected discounted profits from being active in the same market with N ′ firms just

after the survival outcomes are realized. Figure 1 shows the points in the survival

stage when these value functions apply.

A firm’s post-survival value equals the expected sum of the profit and post-entry

value that accrue to the firm in the next period, discounted to the current period

with ρ:

vS(n′, y) = ρEaE
[
π(n′, Y ′) + vE(N ′E, Y

′)
∣∣N ′ = n′, Y = y

]
. (1)

Here, EaE is an expectation over the next period’s demand state Y ′ and post-entry
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number of firms N ′E. This expectation operator’s subscript indicates its dependence

on aE. In particular, given N ′ = n′, N ′E is a deterministic function of aE(·, Y ′). Note

that Assumption A1 implies that vE is bounded from above. This ensures that the

expectation in the right-hand side of (1) exists.4

Because the payoff from leaving the market is zero, a firm’s post-entry value in

a state (nE, y) equals the probability that it survives, aS(nE, y), times the expected

payoff from surviving:5

vE(nE, y) = aS(nE, y) EaS
[
vS(N ′, y)

∣∣NE = nE, Y = y
]
, (2)

The expectation EaS over N ′ takes survival of the firm of interest as given. That is,

it takes N ′ to equal one plus the outcome of nE−1 independent Bernoulli (survival)

trials with success probability aS(nE, y). Its subscript makes its dependence on aS

explicit. It conditions on the current value of Y because this influences the survival

probability’s value.

If a strategy (aE, aS) forms a symmetric Markov-perfect equilibrium with payoffs

(vE, vS), then no firm can gain from a one-shot deviation from its prescriptions:6

aE(m, y) ∈ arg max
a∈{0,1}

a
(
EaE [vE(NE, y)|M = m,Y = y]− ϕ(m, y)

)
and (3)

aS(nE, y) ∈ arg max
a∈[0,1]

aEaS [vS(N ′, y)|NE = nE, Y = y] . (4)

Together with Assumption A2, (3) and (4) bound the long-run number of firms in

equilibrium.

Lemma 1 (Bounded number of firms) In a symmetric Markov-perfect equilib-

rium, aE(n, y) = 0 and aS(n, y) < 1 for all n > ň and y ∈ Y.

The Appendix provides this Lemma’s proof. Intuitively, firms cannot survive for

sure with n > ň firms because this would give them negative payoffs. To see this,

note that if all firms continue for sure, each would earn a negative profit one or

more times (due to our assumption π(n, y) < 0 for all n > ň). In the first future

period in which firms leave with positive probability, (4) requires the post-entry

value to equal zero. Therefore, continuing for sure with n > ň yields a negative

4At this point in our model’s development, we cannot exclude the possibility that it equals
−∞.

5We define the right-hand side of (2) to equal zero if the firm collects a payoff of zero by exiting
for sure (aS(nE , y) = 0), even if EaS

[
vS(N ′, y)

∣∣NE = nE , Y = y
]

= −∞.
6We define the maximands in the right-hand sides of (3) and (4) to equal zero if a = 0.
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expected payoff. Any firm could avoid this by exiting instead, so aS(n, y) < 1 and

vE(n, y) = 0. Because no firm would be willing to pay a positive sunk cost to enter

a survival subgame with zero expected payoff, aE(n, y) = 0.

In equilibrium, the market can have more than ň active firms only if the initial

number of active firms, N1, exceeds ň. Because these firms exit with positive

probability until there are ň or fewer of them, Nt must eventually enter {0, 1, . . . , ň}
permanently. Consequently, the equilibrium analysis hereafter focuses on the

restrictions of aE, vE, aS, and vS to {1, 2, . . . , ň}×Y ⊂ H. Extending an equilibrium

strategy on this restricted state space to the full state space is straightforward.

Lemma 1 implies that setting the number of potential entrants per period (̌) to

exceed ň guarantees that at least one potential entrant per period refuses an entry

opportunity. In this sense, the model becomes one of free entry, as in Ericson and

Pakes (1995). This is a standard and convenient assumption in applications without

an identifiable and finite set of potentially active firms. The remaining development

of our model imposes this free entry assumption (̌ > ň).

In the online supplement, we show that (3) and (4) are not only necessary, but

also sufficient for (aE, aS) to be an equilibrium strategy. Proofs of this “one-shot

deviation principle” (e.g. Fudenberg and Tirole, 1991, Theorem 4.2) typically make

assumptions on payoffs that bound from both above and below the value gains from

deviating in the distant future from any strategy, whether that strategy satisfies (3)

and (4) or not. Our model does not satisfy these assumptions, because it imposes no

lower bound on profits.7 Conditions (3) and (4) do, however, imply a lower bound

(corresponding to the outside option of zero) on the values in the survival and entry

nodes in equilibrium (including vE). Because the expected discounted profits in

these decision nodes are bounded from above under any strategy profile, the gains

from deviating from a strategy (aE, aS) that satisfies (3) and (4) are bounded from

above. Using this, we adapt existing proofs of the one-shot deviation principle.

Before proceeding to characterize the equilibrium set, we wish to note and

dispense with an uninteresting source of equilibrium multiplicity. If a potential

7The absence of a lower bound on profits is important when we bring the model to the data
as we do in Abbring et al. (2017), where we provide a full econometric development of the model
presented here. There, y is vector-valued and includes two elements, a demand state that is
observed by the econometrician and a cost shock that is unobserved by the econometrician. These
cost shocks serve as the model’s econometric error. Permitting profits to be unbounded from below
(and therefore permitting cost shocks to become arbitrarily large) is critical for ensuring that the
model is statistically nondegenerate.
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entrant is indifferent between entering and staying out, we may be able to construct

one equilibrium from another by varying only that choice. Similarly, an incumbent

monopolist can be indifferent between continuation and exit, and we can possibly

construct one equilibrium from another by changing that choice alone. To avoid

such uninteresting caveats to our results, we follow Abbring and Campbell (2010) by

focusing on equilibria that default to inactivity. In such an equilibrium, a potential

entrant that is indifferent between entering or not stays out,

EaE [vE(NE, y)|M = m,Y = y] = ϕ(m, y)⇒ aE(m, y) = 0,

and an active firm that is indifferent between all possible outcomes of the survival

stage exits,

vS(1, y) = · · · = vS(nE, y) = 0⇒ aS(nE, y) = 0.

The restriction to equilibria that default to inactivity does not restrict the

game’s strategy space. Hereafter, we require the strategy underlying a “symmetric

Markov-perfect equilibrium” to default to inactivity. When Y follows a continuous

distribution, an exact indifference between activity and inactivity occurs with

probability zero. For this reason, the restriction to equilibria that default to

inactivity is very weak.

3.2 Existence, Uniqueness, and Computation

A key step in the equilibrium analysis uses the assumption that the per period

profit weakly decreases with the number of competitors to show that the same

monotonicity applies to the post-survival value functions.

Lemma 2 (Monotone equilibrium payoffs) In a symmetric Markov-perfect equi-

librium, vS(n′, y) weakly decreases with n′ for all y ∈ Y.

The Appendix contains Lemma 2’s proof. It says that no endogenous complemen-

tarity between firms arises in equilibrium. To appreciate its implications, consider a

one-shot simultaneous-moves survival game played by nE active firms. In it, each of

the n′ survivors earns vS(n′, y), where vS is the post-survival value in a symmetric

Markov-perfect equilibrium of our dynamic game, and each exiting firm earns zero.

A survival probability aS(nE, y) is a symmetric Nash equilibrium strategy of this

one-shot game if and only if it satisfies (4). Thus, a survival rule aS from a symmetric
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Markov-perfect equilibrium gives a symmetric Nash equilibrium survival probability

aS(nE, y) for each one-shot game defined by nE ∈ {1, . . . , ň} and y ∈ Y . The

converse also holds good: A collection of Nash equilibrium survival probabilities

from survival games can be assembled into a survival rule.

This one-shot game has many equilibria in the trivial case that vS(1, y) = · · · =
vS(nE, y) = 0. In this case, our restriction to equilibria that default to inactivity

requires aS(nE, y) = 0. In the more interesting case where vS(n′, y) 6= 0 for at least

one n′ ∈ {1, . . . , nE}, Lemma 2 guarantees that the one-shot game has a unique

symmetric Nash equilibrium. To show this, we distinguish three mutually exclusive

subcases.

• vS(1, y) ≤ 0. Lemma 2 implies that vS(n′, y) ≤ 0 for all n′ > 1. Therefore,

exiting for sure is a weakly dominant strategy. Since vS(n′, y) 6= 0 for at least

one n′ ∈ {1, . . . , nE}, we also know that vS(nE, y) < 0. This makes exiting

for sure the unique best response to any positive symmetric continuation

probability, so there is only one symmetric equilibrium. In it, aS(nE, y) = 0.

• vS(nE, y) ≥ 0. Lemma 2 implies that vS(n′, y) ≥ 0 for n′ < nE. Therefore,

continuing for sure is a weakly dominant strategy. Since vS(n′, y) 6= 0 for

at least one n′ ∈ {1, . . . , nE}, we also know that vS(1, y) > 0. This makes

continuing for sure the unique best response to any continuation probability

less than one, so there is only one symmetric equilibrium. In it, aS(nE, y) = 1.

• vS(1, y) > 0 > vS(nE, y). No symmetric pure strategy equilibrium exists,

because the best response to all other firms continuing for sure is to exit for

sure, and vice versa. In a mixed strategy equilibrium, firms must be indifferent

between continuation and exit. By the intermediate value theorem, there is

some a ∈ (0, 1) that solves the indifference condition
nE∑
n′=1

(
nE − 1

n′ − 1

)
an

′−1 (1− a)nE−n′
vS(n′, y) = 0,

where the left-hand side gives the expected value from survival when all other

nE − 1 firms survive with probability a and the right-hand side gives the

value from exit. This establishes existence of a mixed strategy equilibrium.

Lemma 2 and this case’s preconditions together guarantee that the left-hand

side strictly decreases with a. Therefore, there is only one symmetric mixed
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strategy equilibrium.

For future reference, we state this equilibrium uniqueness result with

Corrollary 1 Fix nE ∈ {1, . . . , ň} and y ∈ Y, let vS be the post-survival value

function associated with a symmetric Markov-perfect equilibrium, and suppose that

vS(n′, y) 6= 0 for at least one n′ ∈ {1, . . . , nE}. In the one-shot survival game

in which nE firms simultaneously choose between survival and exit (as in the

survival stage of Figure 1), each of the n′ survivors earns vS(n′, y), and each exiting

firm earns zero; there is a unique symmetric Nash equilibrium, possibly in mixed

strategies.

When the individual payoff from joint continuation is positive, this unique Nash-

equilibrium strategy from Corollary 1 guarantees that firms survive for sure and

receive this payoff. In all other states, each firm is either indifferent between

surviving and exiting or prefers to exit for sure; and following the strategy gives

each of them an expected payoff of zero. The post-entry payoff is always zero in the

trivial case with vS(1, y) = · · · = vS(nE, y) = 0 excluded by Corollary 1. Thus,

Corrollary 2 If vE and vS are the post-entry and post-survival value functions

associated with a symmetric Markov-perfect equilibrium, then

vE(nE, y) = max{0, vS(nE, y)}.

Note that Corollary 2 in combination with Lemma 2 implies that vE(nE, y) also

weakly decreases with nE.

We proceed to demonstrate equilibrium existence constructively using Algorithm

1. Equilibrium uniqueness follows from this as a byproduct. Denote the

candidate equilibrium values that the algorithm calculates with νE and νS, and

the corresponding candidate equilibrium strategy with (αE, αS).

First, consider states with ň firms. By Lemma 1, there will be no entry in a

period starting with ň firms. With (1), this implies that any possible candidate

equilibrium post-survival value must satisfy

νS(ň, y) = ρE
[
π(ň, Y ′) + νE(ň, Y ′)

∣∣Y = y
]
.

With Corollary 2, this constrains the candidate post-entry value to satisfy

νE(ň, y) = max
{

0, ρE
[
π(ň, Y ′) + νE(ň, Y ′)

∣∣Y = y
]}
. (5)
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START

n ← ň, f ∗(·) ← 0

µ(n, ·) ← n +
∑ň

m=n+1 αE(m, ·)

f ?(·) ← limi→∞ T
i
n(f ?)(·)

νE(n, ·) ← f ?(·)

αE(n, ·) ← 1[νE(n, ·) > ϕ(n, ·)]

n = 1?n ← n − 1

for all n′ ∈ {1, ..., ň}:

νS(n′, ·)← ρE [π(n′, Y ′) + νE (µ(n′, ·), Y ′) |Y = ·]

for all nE ∈ {1, ..., ň}:

αS(nE, ·)←


0 if νS(1, ·) ≤ 0

a if νS(nE, ·) ≤ 0 < νS(1, ·),
where a solves

∑nE

n′=1

(
nE−1
n′−1

)
an

′−1(1− a)nE−n′
νS (n′, ·) = 0

1 if νS(nE, ·) > 0

STOP
Above, we take

∑ň
m=ň+1 αE(m, ·) ≡

0, Tn from (7), and T in to denote Tn
composed with itself i times.

Yes

No

Algorithm 1: Equilibrium Calculation
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The right-hand side of (5) defines a contraction mapping on the space of bounded

functions on Y , with a unique fixed point νE(ň, ·). This νE(ň, ·) is the only possible

equilibrium post-entry value in a state with ň firms. Moreover, any entry rule that

is (i) consistent with it, (ii) one-shot deviation proof as in (3), and (iii) defaults to

inactivity must dictate entry into a market with ň− 1 incumbents if and only if the

payoff from doing so is positive. Thus, the algorithm sets

αE (ň, y) = 1 [νE(ň, y) > ϕ(ň, y)] .

Here, 1[x] = 1 if x is true and equals 0 otherwise.

With νE(ň, ·) and αE(ň, ·) calculated, the algorithm proceeds with the recursive

construction of νE(n, ·) and αE(n, ·) for n decreasing from ň− 1 to 1. For a given n,

the algorithm has already calculated νE(n?, ·) and αE(n?, ·) for n? = n+1, n+2, ..., ň.

Suppose that νE(n?, ·) and αE(n?) weakly decrease with n? (which, by Lemma 2 and

Corollary 2, they will if νE is indeed an equilibrium post-entry value). Then,

µ(n, y) ≡ n+
ň∑

m=n+1

αE(m, y)

equals the number of firms that will be active in a period that starts with n firms

after all that period’s potential entrants have followed the candidate entry rule.

Together, (1) and Corollary 2 require the candidate post-entry values to satisfy

νE(n, y) = max
{

0, ρE
[
π(n, Y ′) + νE(µ(n, Y ′), Y ′)

∣∣Y = y
]}
. (6)

Given νE(n?, ·) for n? = n+1, . . . , ň, the right-hand side of (6) defines a contraction

Tn(f)(y) = max{0, ρE[π(n, Y ′) + 1[µ(n, Y ′) = n]f(Y ′) (7)

+ 1[µ(n, Y ′) > n]νE(µ(n, Y ′), Y ′) Y = y]}

with a unique fixed point νE(n, ·). This is the only possible post-entry value. Finally,

a firm in state (n, y) enters if and only if νE(µ(n, y), y) > ϕ(n, y). Again supposing

that νE(n?, y) and αE(n?, y) weakly decrease with n∗, and using that ϕ(n?, y) weakly

increases with n∗, this entry rule can be simplified to

αE(n, y) = 1 [νE(n, y) > ϕ(n, y)] .

Once the algorithm’s recursive part is complete, it has constructed a candidate

post-entry value and entry rule. With (1), these imply a unique candidate post-

survival value νS. After computing νS, the algorithm ends by setting the candidate

survival rule αS to a value consistent with νS and the analysis leading up to Corollary
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1. Specifically, it sets αS(nE, y) = 0 for all (nE, y) such that νS(nE, y) = · · · =

νS(1, y) = 0 (the algorithm subsumes this in the case that νS(1, y) ≤ 0) and finds

an equilibrium to Corollary 1’s one-shot survival game for all other (nE, y). If the

candidate is actually an equilibrium, then Corollary 1 guarantees that this candidate

survival rule exists and is unique. This is indeed so.

Theorem 1 (Equilibrium existence and uniqueness) There exists a unique

symmetric Markov-perfect equilibrium. The equilibrium strategy and corresponding

equilibrium payoffs are those computed by Algorithm 1.

4 Conclusion

This paper’s theoretical and computational results enable our model’s empirical

application. Since its key simplifying assumption imposes homogeneity of expected

profits when firms make their entry and continuation choices, it is best suited for

investigations that can be usefully undertaken while abstracting from persistent

heterogeneity among competing firms. Examples of such studies include Bresnahan

and Reiss’s (1994) and Dunne, Klimek, Roberts, and Xu’s (2013) estimations of

oligopolists’ sunk costs with panel data on firm counts and demand from cross

sections of markets. In Abbring, Campbell, Tilly, and Yang (2017), we propose

a simple procedure for empirically determining whether or not our model can be

usefully applied to such data from a given industry. This decomposes the industry’s

Herfindahl-Hirschman Index (HHI ) into its value with equally sized firms and a

residual that we label the contribution of heterogeneity. Our procedure tests whether

this heterogeneity measure contributes to forecasts of the number of active firms.

If not, then our model can accommodate observed heterogeneity with transitory

firm-specific disturbances. We applied this procedure to data from Motion Picture

Theaters in 573 Micropolitan Statistical Areas in the United States. We found that

heterogeneity’s contribution to the HHI makes economically trivial contributions to

Poisson regressions’ forecasts of the number of firms serving that industry.

Our companion paper also demonstrates the practicality of applying our model

to such data by estimating Motion Picture Theaters’ sunk costs and the toughness

of competition between them. The model’s maximum likelihood estimation requires

calculating a separate equilibrium for each market in the data for each trial value

of its parameters, but this required only about thirty minutes using two Intel Xeon

14



E5-2699 v3 CPUs (released by Intel in 2014) on a single machine with C++ code.

We were also able to conduct many policy experiments, which calculated the effects

of large demand shocks and counterfactual competition policies. This experience

leads us to conclude that structural investigations of oligopoly dynamics based on

this paper’s model can be done with few computational resources.
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Appendix: Proofs

Proof of Lemma 1. First, we will prove that aS(n, y) < 1 for all y ∈ Y and

n > ň. Consider a period t? survival subgame with NE,t? = n > ň firms and demand

state Yt? = y. Define the random time τ as the first period weakly after t? in which

firms choose exit with positive probability, with τ ≡ ∞ if they never do:

τ ≡ min ({t ≥ t? : aS(NE,t, Yt) < 1} ∪ {∞}) .

Suppose that aS(n, y) = 1, so τ > t?. By definition, exit occurs only in or after

period τ , so we know that Nt = NE,t−1 ≥ n for t ∈ {t? + 1, . . . , τ}. (Recall from

Footnote 1 that we take aS(·) = 1 to dictate sure survival, not merely almost-sure

survival.) Since n > ň, this together with Assumption A2 implies that π(Nt, Yt) < 0

for t ∈ {t? + 1, . . . , τ}. If τ = ∞, then the incumbent firms receive an infinite

sequence of strictly negative payoffs. If instead τ < ∞, then the incumbent firms

receive a finite sequence of strictly negative payoffs followed by the post-entry value

from playing the period τ survival subgame vE(NE,τ , Yτ ), which equals zero by (2),

(4), and the definition of τ . Therefore, the period t? post-survival value satisfies

vS(n, y) < 0. Since a period t? incumbent firm can raise its payoff to zero by

choosing certain exit, the supposition that aS(n, y) = 1 must be incorrect.

Next, we will prove that aE(n, y) = 0 for all y ∈ Y and n > ň. Consider the

decision of the first potential entrant, firm (t?, 1), in a period t? entry subgame that

starts with Nt? = n − 1 > ň − 1 incumbents and demand state Yt? = y. Note that

this firm pays ϕ(n, y) > 0 upon entry. In return, it earns a post-entry value of zero
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(as proven above). Therefore, it maximizes its payoff by staying out of the market

and earning zero: aE(n, y) = 0.

Proof of Lemma 2. It suffices to prove that vS(n′, y) ≥ vS(n′+1, y) for all n′ ≥ 1

and y ∈ Y . To this end, consider a subgame beginning immediately after the period

t?’s simultaneous continuation and entry choices with Nt?+1 = n′ and Yt? = y. We

call this the original subgame. Now consider a second period t? subgame starting

at the same point but with one additional firm. We refer to this as the perturbed

subgame and use N+
t and N+

E,t to denote the initial and post-entry numbers of firms

in this perturbed subgame in period t. Finally, define the random time τ+ as the

first period weakly after t? + 1, in which the firms in the perturbed subgame choose

exit with positive probability, with τ+ ≡ ∞ if they never do:

τ+ ≡ min
(
{t ≥ t? + 1 : aS(N+

E,t, Yt) < 1} ∪ {∞}
)
.

There is no exit before period τ+ in the perturbed subgame. Furthermore, we know

that the period τ+ post-entry value in that subgame equals zero. Therefore, we can

write

vS(n′ + 1, y) = lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

]
π(N+

t , Yt) Yt? = y

]
.

Since τ+ is a consequence of equilibrium choices, we know that vS(n′+ 1, y) > −∞.

Now consider an incumbent firm in the original subgame which (possibly)

deviates after the period t? survival stage by choosing to survive for sure as long

as t < τ+ and to exit for sure if t = τ+. Let N̄t denote the number firms serving

the market during period t in the original subgame with this deviation. Since the

original strategy was part of a subgame-perfect equilibrium, vS(n′, y) exceeds the

expected payoff from following this deviating strategy. That is

vS(n′, y) ≥ lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

]
π(N̄t, Yt) Yt? = y

]
.

To show that the limit on the right-hand side is well defined, note that N̄t ≤ N+
t for

all t ≤ τ+. Otherwise, the two subgames would have potential entrants in the same

states making different entry choices. This would violate either the presumption

that the equilibrium strategy is Markov or that it defaults to inactivity. This

and Assumption A3 imply that π(N̄t, Yt) ≥ π(N+
t , Yt) for all t = t? + 1, . . . , τ+.

Combining this with vS(n′ + 1, y) > −∞ gives the desired result.
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Because the difference of two convergent sequences’ limits equals the limit of the

sequences’ difference, we can write

vS(n′, y)−vS(n′ + 1, y)

≥ lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

] (
π(N̄t, Yt)− π(N+

t , Yt)
)
Yt? = y

]
.

Each term in the partial sum on the right-hand side is non-negative, so we conclude

that vS(n′, y)− vS(n′ + 1, y) ≥ 0.

Proof of Theorem 1. The proof is divided into three parts. First, we show that

the candidate post-survival value from Algorithm 1 satisfies Lemma 2’s monotonicity

requirements. Second, we use this to demonstrate that the candidate strategy indeed

forms an equilibrium. Third, we demonstrate equilibrium uniqueness.

Fix n ∈ {1, 2, . . . , ň − 1} and suppose that we know that νE(n + 1, ·) ≥ · · · ≥
νE(ň, ·). Evaluating Tn at f ?(·) = νE(n+ 1, ·) gives

Tn(f ?)(·) = max{0, ρE[π(n, Y ′) + f ?(Y ′)

+ 1[µ(n, Y ′) > n](νE(µ(n, Y ′), Y ′)− f ?(Y ′))|Y = ·]}

≥max{0, ρE[π(n+ 1, Y ′) + f ?(Y ′) (8)

+ 1[µ(n, Y ′) > n+ 1](νE(µ(n, Y ′), Y ′)− f ?(Y ′))|Y = ·]}

= max{0, ρE[π(n+ 1, Y ′) + f ?(Y ′) (9)

+ 1[µ(n+ 1, Y ′) > n+ 1](νE(µ(n+ 1, Y ′), Y ′)− f ?(Y ′))|Y = ·]}

= νE(n+ 1, ·).

The inequality in (8) follows from Assumption A3 and the assumed f ?(Y ′) = νE(n+

1, Y ′). Since νE(n?, Y ′) weakly decreases with n? for n? > n, so does αE(n?, Y ′).

Therefore, µ(n, Y ′) = µ(n + 1, Y ′) whenever µ(n, Y ′) > n + 1. This gives us (9).

The final equality follows again from f ?(Y ′) = νE(n + 1, Y ′). The operator Tn is

a monotone contraction mapping, so Tn(f ?)(·) ≥ νE(n + 1, ·) implies that its fixed

point, νE(n, ·), weakly exceeds νE(n+ 1, ·). Recursively applying this argument for

n decreasing from ň − 1 to 1 proves that νE(1, ·) ≥ νE(2, ·) · · · ≥ νE(ň, ·). With

Assumption A3 and the now established fact that µ(n′, ·) weakly increases with n′,

this monotonicity implies that

νS(n′, ·) = ρE [π(n′, Y ′) + νE (µ(n′, ·), Y ′) |Y = ·]

weakly decreases with n′. This is the desired monotonicity result.
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For the second part, we first verify that αE, νS, and νE satisfy (3) and (1). Since

νE(nE, y) weakly decreases with nE, αE(m, y) weakly decreases with m, so that

EαE
[νE(NE, y)|M = m,Y = y] = νE(µ(m, y), y). (10)

Thus, to verify (3), it suffices to show that νE(µ(m, y), y) > ϕ(m, y) if and only

if νE(m, y) > ϕ(m, y). If νE(µ(m, y), y) > ϕ(m, y) then, because µ(m, y) ≥ m

and νE(nE, y) weakly decreases with nE, νE(m, y) ≥ νE(µ(m, y), y) > ϕ(m, y).

Conversely, if νE(m, y) > ϕ(m, y), then νE(µ(m, y), y) > ϕ(µ(m, y), y) so that, by

Assumption A4, νE(µ(m, y), y) > ϕ(m, y). This establishes that αE and νE satisfy

(3). Using (10), it is easy to verify that αE, νS, and νE satisfy (1).

Next, consider (4) and (2). For states (nE, y) such that νS(1, y) = · · · =

νS(nE, y) = 0, (4) imposes only the trivial requirement that αS(nE, y) ∈ [0, 1].

Algorithm 1’s selection of αS(nE, y) = 0 (subsumed in the case νS(1, y) ≤ 0)

satisfies this. For all other states, Algorithm 1 sets αS(nE, y) to the symmetric

Nash equilibrium of Corollary 1’s nE-player one-shot survival game with payoffs

νS(n′, y) from survival with n′ = 1, . . . , nE firms, which satisfies (4). (If νS(nE, y) =

0 < νS(1, y), it sets αS(nE, y) to the unique mixing probability that makes firms

indifferent, which indeed equals one as in Corollary 1’s equilibrium.) Equation (2)

requires νE(n, y) to equal the expected payoff to this game, max{0, νS(n, y)}, which

is true by construction. We conclude that (αE, αS) indeed forms an equilibrium.

We end by demonstrating equilibrium uniqueness. First, Section 3.2’s argument

implies that any vE(ň, ·) equals the unique fixed point νE(ň, ·) of Tň. With (3), this

gives a unique aE(n, ·) that defaults to inactivity, α(n, ·). Next, repeat the following

argument for n decreasing from ň−1 to 1. For given n, suppose that we have uniquely

determined vE(n?, ·) = νE(n?, ·) and aE(n?, ·) = αE(n?, ·) for n? = n + 1, . . . , ň.

Then, Section 3.2’s argument (which uses (10)) implies that any vE(n, ·) equals the

unique fixed point νE(n, ·) of Tn. With (3), this gives a unique aE(n, ·) that defaults

to inactivity. By the argument following (10), aE(n, ·) = αE(n, ·). This establishes

that vE = νE and aE = αE. With (1), these imply a unique value of vS, νS. Finally,

Corollary 1 and the requirement that the strategy defaults to inactivity together

imply that there is a unique aS corresponding to this post-entry value, αS.
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This supplement to Abbring, Campbell, Tilly, and Yang (2017b) (hereafter

referred to as the “main text”) (i) proves a theorem we rely upon for the

characterization of equilibria and (ii) develops results for an alternative specification

of the model.

Section 1’s Theorem S1 establishes that a strategy profile is subgame perfect if

no player can benefit from deviating from it in one stage of the game and following it

faithfully thereafter. Our proof very closely follows that of the analogous Theorem

4.2 in Fudenberg and Tirole (1991). That theorem only applies to games that are

“continuous at infinity” (Fudenberg and Tirole, p. 110), which our game is not. In

particular, we only bound payoffs from above (Assumption A1 in the main text) and

not from below, because we want the model to encompass econometric specifications
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like Abbring, Campbell, Tilly, and Yang’s (2017a) that feature arbitrarily large cost

shocks. Instead, our proof leverages the presence of a repeatedly-available outside

option with a fixed and bounded payoff, exit.

Section 2 presents the primitive assumptions and analysis for an alternative

model of Markov-perfect industry dynamics in which one potential entrant makes

its entry decision at the same time as incumbents choose between continuation and

exit. We show that the alternative model always has a unique symmetric Markov-

perfect equilibrium that satisfies an intuitive refinement criterion. This equilibrium

can be computed rapidly by a simple algorithm based on contraction mappings

similar to that in the main text.

1 One-Shot Deviations and Subgame Perfection

To prove that a strategy forms a subgame-perfect equilibrium if and only if one-

shot deviations from it increase no player’s payoff, we analyze a general game that

encompasses that described in the recursive extensive form in Figure 1 of the main

text. Like the main text’s game, the general game

• is specified in discrete time t ∈ N,

• is played by firms with names f ∈ F ,

• places an upper bound on each player’s flow payoff, and

• regulary offers firms the option to collect a continuation value of zero.

The general game allows for arbitrary differences across players’ payoffs, because

symmetry is not required for this section’s result.

Since a subgame of the general game may initialize from multiple points within

a given period t, it is useful to focus on stages instead of periods. We index these

stages with k ∈ N and define a function θ : N→ N such that θ(k) = t when stage k

is located in period t. Each period contains the same, finite number ǩ of stages. In

the main text’s game, there are ǩ = ̌ + 2 nontrivial stages each period: the ̌ ∈ N
stages at which potential entrants (t, 1), . . . , (t, ̌) make their entry decisions, the

stage at which all incumbents and new entrants make continuation decisions, and

the stage in which nature draws Y ′.
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Denote the random variable for the entire history at stage k with Hk and its

realization with hk. At history hk, firm f chooses an action from the finite (and

possibly empty) set Af (hk). At each history hk, only finitely many firms f ∈ F
have Af (hk) 6= ∅. For example, in the main text’s game, Af (hk) = {0, 1} if firm f

gets to decide on entry or survival at history hk, and Af (hk) = ∅ otherwise.

A strategy σf for firm f assigns a probability distribution σf (hk) over actions

in Af (hk) to each history hk. A strategy profile σ is a collection of strategies, one

for each firm. We denote the random action taken by firm f in stage k with Afk ,

with possible realizations afk ∈ Af (hk). We collect all firms’ actions in stage k in

the action profile Ak, with realizations ak.

Firms can receive flow payoffs in one or more stages within each period. Let

gf (ak, h
k) denote the flow payoff that firm f receives in stage k with history hk if

firms take actions ak. The analogue to Assumption A1 for this general game is

Assumption S1 (Flow payoff bounded from above) There is a ǧ < ∞ such

that for any firm f , action profile ak, and history hk, we have gf (ak, h
k) ≤ ǧ.

In the main text’s game, gf (ak, h
k) ≡ ρE [π(n′, Y ′)|Y = y] ≤ ρπ̌ < ∞ if stage k is

the survival stage, the implied (by ak and hk) number of firms surviving that stage

is n′, the current demand equals y, and firm f is active. If instead stage k contains

f ’s entry decision, the number of active firms prior to f ’s entry is n, and the current

demand is y, then gf (ak, h
k) ≡ −ϕ(n + 1, y) ≤ 0 if firm f enters (afk = 1). In all

other cases, gf (ak, h
k) ≡ 0.

To complete the general model’s specification, let uf (σ, hk) denote firm f ’s

expected payoff at history hk, discounted to stage k, when all firms use the strategies

in σ. This continuation value is defined as

uf (σ, hk) = lim
Q→∞

Eσ

[
Q∑
q=k

ρθ(q)−θ(k)gf (Aq, H
q) Hk = hk

]
.

Here, the expectation operator’s subscript indicates its dependence on all firms

following their strategies in σ. Since Assumption S1 ensures that the flow payoff is

bounded from above, the limit in the right-hand side is always well defined, either

as a real number, which cannot exceed ǔ ≡ ǩǧ
1−ρ , or as −∞.

A formal statement of the assumption that each firm f in each stage k can

collect a continuation payoff of zero within a finite number of stages, irrespective of

3



the strategies followed by the other players, requires the following definition.

Definition S1 (l-shot deviation) Given a firm f and a strategy σf , we say that

an alternative strategy σ̂f prescribes an l-shot deviation from σf starting in stage k

if

σ̂f (hk
′
) = σf (hk

′
)

for all possible histories hk
′
; k′ = k + l, k + l + 1, . . ..

If l = 1, σ̂f prescribes a one-shot deviation. Note that Definition S1 only excludes

deviations beyond stage k+ l and allows the deviation in earlier stages to be trivial.

Assumption S2 (Exit option) For each stage k and firm f , there exists a finite

k′ ≥ k such that, for all possible histories hk
′

at stage k′ and strategy profiles σ,

uf (σ̂, hk
′
) = 0 for a strategy profile σ̂ obtained from σ by replacing σf with some

strategy σ̂f that prescribes a (possibly trivial) one-shot deviation from it in stage k′.

The main text’s game satisfies this assumption. In particular, in that game, a firm

f active in stage k will have an option to exit and collect a zero continuation value

within ǩ stages. A firm f that will have an entry opportunity in or after stage k will

be able to forgo that entry opportunity and collect zero within a finite number of

periods (and therefore stages). A firm f that has exited before stage k will trivially

collect uf (σ, hk) = 0 for all possible histories at stage k (in this trivial case, k′ can

simply be taken equal to k, and no one-shot deviation is needed).

With the general game’s specification complete, we begin its analysis with two

further definitions.

Definition S2 (l-shot-deviation proof) A strategy profile σ is l-shot-deviation

proof if for any stage k, history hk, and firm f ; there is no strategy σ̂f that prescribes

an l-shot deviation from σf starting in stage k such that

uf (σ̂, hk) > uf (σ, hk),

where σ̂ is the strategy profile obtained by replacing σf with σ̂f in σ.
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Definition S3 (Subgame perfection) A strategy profile σ is subgame perfect if

for any stage k, history hk and firm f ; there is no strategy σ̂f such that

uf (σ̂, hk) > uf (σ, hk)

where σ̂ is the strategy profile obtained by replacing σf with σ̂f in σ.

We begin our demonstration that a strategy profile is one-shot-deviation proof

if and only if it is subgame perfect with the following lemma. Its proof mimics

Fudenberg and Tirole (1991)’s inductive proof of their Theorem 4.1.

Lemma S1 Any strategy profile σ that is one-shot-deviation proof is also l-shot

deviation proof for any l ∈ N.

Proof. The lemma is true by assumption for l = 1. Suppose that it is true for some

l ∈ N. We wish to demonstrate that it is also true for l+ 1. Consider a strategy for

some firm f , σ̂f , that prescribes a single (l+1)-shot deviation starting in some stage

k. Use σ̂ to denote the strategy profile obtained from σ by replacing σf with σ̂f .

Next, construct a second strategy σ̃f that agrees with σ̂f in all stages k′ ≤ k+ l− 1

and agrees with σf otherwise. The strategy profile obtained from σ by replacing σf

with σ̃f is σ̃.

Note that σ̃f prescribes an l-shot deviation from σf starting in stage k. Fix an

arbitrary history hk. The presumption that the proposition is true for l implies that

uf (σ̂, hk)− uf (σ, hk) = uf (σ̂, hk)− uf (σ̃, hk) + uf (σ̃, hk)− uf (σ, hk)

≤ uf (σ̂, hk)− uf (σ̃, hk).
(1)

The definition of uf (·, hk) gives us

uf (σ̂, hk) =
k+l−1∑
q=k

ρθ(q)−θ(k)Eσ̂
[
gf (Aq, H

q) Hk = hk
]

+ ρθ(k+l)−θ(k)Eσ̂
[
uf (σ̂, Hk+l) Hk = hk

]
.
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The same definition and the construction of σ̃ yields

uf (σ̃, hk) =
k+l−1∑
q=k

ρθ(q)−θ(k)Eσ̂
[
gf (Aq, H

q) Hk = hk
]

+ ρθ(k+l)−θ(k)Eσ̂
[
uf (σ,Hk+l) Hk = hk

]
=uf (σ̂, hk) + ρθ(k+l)−θ(k)Eσ̂

[
uf (σ,Hk+l) Hk = hk

]
− ρθ(k+l)−θ(k)Eσ̂

[
uf (σ̂, Hk+l) Hk = hk

]
.

Since σ̂f prescribes a one-shot deviation from σf in stage k + l, we know that

uf (σ̂, hk+l) ≤ uf (σ, hk+l) for all possible histories hk+l in stage k + l. Therefore,

uf (σ̂, hk)−uf (σ̃, hk) = ρθ(k+l)−θ(k)Eσ̂
[
uf (σ̂, Hk+l)− uf (σ,Hk+l) Hk = hk

]
≤ 0.

The above inequality and (1) jointly imply that uf (σ̂, hk) − uf (σ, hk) ≤ 0. That

is, the proposed (l + 1)-shot deviation fails to increase firm f ’s payoff. Continuing

inductively establishes the desired conclusion.

With this lemma in hand, we state and prove this section’s central theorem,

which establishes the necessity and sufficiency of one-shot-deviation proofness for

subgame perfection.

Theorem S1 A strategy profile σ is subgame perfect if and only if it is one-shot-

deviation proof.

Proof. Necessity directly follows from the definition of subgame perfection. To

demonstrate sufficiency, assume that firm f uses a strategy σ̂f that prescribes a

deviation from some stage k and use σ̂ to denote the strategy profile obtained from

σ by replacing σf with σ̂f . If σ̂f is an l-shot deviation from σf , Lemma S1 ensures

that it cannot improve on σf .

Suppose that σ̂f instead prescribes a deviation in infinitely many stages. Fix an

arbitrary history hk and some finite k′ > k. Assumption S2 guarantees that there

is a finite stage k′′ ≥ k′, such that firm f can guarantee a payoff uf (·, hk′′) = 0

for all possible histories hk
′′

and all strategy profiles by a (possibly trivial) one-shot

deviation in stage k′′. Now construct an alternative deviating strategy σ̃f that agrees

with σ̂f until (but not including) k′′ and agrees with σf afterwards. The strategy
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profile obtained from σ by replacing σf with σ̃f is σ̃. The construction of σ̃ gives us

uf (σ̂, hk)− uf (σ̃, hk) = ρθ(k
′′)−θ(k)Eσ̂

[
uf (σ̂, Hk′′)− uf (σ,Hk′′) Hk = hk

]
.

Since σ is one-shot-deviation proof and Assumption S2 ensures that firm f can earn

a continuation value of zero by a one-shot deviation from σ in stage k′′, we have

Eσ̂
[
uf (σ,Hk′′) Hk = hk

]
≥ 0.

So

uf (σ̂, hk)− uf (σ̃, hk) ≤ ρθ(k
′′)−θ(k)Eσ̂

[
uf (σ̂, Hk′′) Hk = hk

]
≤ ρθ(k

′′)−θ(k)ǔ.

With this inequality in hand, we can write

uf (σ̂, hk)− uf (σ, hk) =uf (σ̂, hk)− uf (σ̃, hk) + uf (σ̃, hk)− uf (σ, hk)

≤uf (σ̂, hk)− uf (σ̃, hk)

≤ρθ(k′′)−θ(k)ǔ ≤ ρθ(k
′)−θ(k)ǔ.

Here, the first inequality follows from Lemma S1. Since k′ was arbitrary and

limk′→∞ θ(k
′) = ∞, we conclude that uf (σ̂, hk) − uf (σ, hk) ≤ 0. Therefore, the

proposed deviation fails to improve firm f ’s payoff and the strategy profile is

subgame perfect.

2 An Alternative Model

The remainder of this supplement presents an alternative model in which one

potential entrant per period makes an entry decision at the same time incumbent

firms choose between continuation and exit.

2.1 Primitives

The alternative model considered here differs from the one presented in the main

text in two primitive assumptions. First, each period has exactly one potential

entrant. Second, the single potential entrant makes its entry decision at the same

time incumbents make their continuation decisions. The recursive extensive form in
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Period t Subgame

Start with Nt incumbents and demand
state Yt (or initialize (N1, Y1) if t = 1).

ãtE

Pre-decision value: ṽE(Nt, Yt)

Incumbents earn π(Nt, Yt).

Entrant t pays ϕ(Nt + 1, Yt). t earns 0.

1

ãf1S

0

f1 earns 0.

1

...

0

ã
fNt
S

fNt earns 0.

1

Nt+1 ∼ B
(
ãtE, ã

f1
S , . . . , ã

fNt
S

)0

Yt+1 ∼ G(· |Yt)

Period t + 1

Post-decision value: ṽS(Nt+1, Yt)

Figure 1: The Alternative Model’s Recursive Extensive Form

Figure 1 presents the timing. All primitive assumptions from the main text on per

period profit π(n, y) and the cost of entry ϕ(n, y) remain in place.

In this model, there is no distinction between the entry stage and the survival
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stage. Each period of the alternative model starts with incumbent firms earning the

per period profit π(Nt, Yt). Then, one potential entrant with name t contemplates

becoming active at the same time incumbents make their continuation decisions.

(Incumbent firms in period 0 have arbitrary names in F0.) Entry requires paying the

sunk cost ϕ(Nt + 1, Yt). As in the model presented in the main text, simultaneously

moving firms, including the potential entrant, can use mixed strategies. All entry

and survival outcomes are realized independently across firms according to the

chosen Bernoulli distributions. Firms that exit or fail to enter earn zero and never

again participate in the market. Active firms continue to the next period.

2.2 Equilibrium

For incumbent firms contemplating survival, the payoff-relevant variables are the

number of active firms at the beginning of the period and the current demand state.

For a potential entrant, they are this same number of firms plus one (that is, the

number of firms that would serve the market next period if this firm would enter

and all incumbents would continue) and the current demand state. Note that this

implies that incumbents that decide on survival in a state (n, y) move jointly with a

potential entrant in state (n + 1, y). We have made this, perhaps counterintuitive,

choice, because it is consistent with the specification of the state variables in the

main text and will simplify notation later.

As in the main text, we focus our analysis on symmetric Markov-perfect

equilibria: subgame perfect equilibria in which all players use a common Markov

strategy. In this context, a Markov strategy is a pair of functions, ãE : N×Y → [0, 1]

and ãS : N × Y → [0, 1]. Firms’ values at two nodes of the game tree—just before

firms’ entry/continuation decisions and just after the decisions’ realizations—are

important for the equilibrium analysis. Although there are no separate entry and

survival stages, we use notation analogous to the main text and denote the pre-

decision and post-decision values as ṽE and ṽS. Figure 1 shows the points where

these value functions apply.
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An equilibrium strategy and its associated values satisfy

ṽE(n, y) = max
a∈[0,1]

aEãS ,ãE [ṽS(N ′, y)|N = n, Y = y] , (2)

ṽS(n′, y) = ρE [π(n′, Y ′) + ṽE(n′, Y ′)|Y = y] , (3)

ãE(n+ 1, y) ∈ arg max
a∈[0,1]

a
(
EãS [ṽS(N ′, y)|N = n, Y = y]− ϕ(n+ 1, y)

)
, (4)

ãS(n, y) ∈ arg max
a∈[0,1]

aEãS ,ãE [ṽS(N ′, y)|N = n, Y = y] . (5)

The expectation operators condition on the deciding firm choosing to be active in

the next period and on all other firms using the entry or exit rule in the operator’s

subscript. Theorem S1 ensures that (2)–(5) are not only necessary but also sufficient

conditions for a symmetric Markov-perfect equilibrium.

2.3 Equilibrium Multiplicity and Refinement

There can be more than one symmetric Markov-perfect equilibrium in this model.

Unlike the model in the main text, it involves simultaneous moves by firms with

heterogeneous payoffs (incumbents on the one hand and a potential entrant on the

other). We demonstrate how this might lead to equilibrium multiplicity with a

numerical example.

Example S1 Suppose that the aggregate state Y follows a deterministic first-order

Markov process such that Y1 = 3, Y2 = 2, and Yt = 0 for all t ≥ 3. Specify the per

period profit as

π(n, y) = y/n− 1.5,

and assume that ρ > 0 and ϕ(n, y) = ρ/4. In this game, any firm serving the

market in period 3 or beyond will earn a negative payoff. Therefore, in equilibrium,

no firms will enter and all incumbents will exit in period 2 (demand state 2) and

beyond (demand state 0).

In period 1 (demand state 3), equilibrium play is not so trivial. Suppose that

one incumbent is active at the beginning of period 1. The static game (the analogue

of Corollary 1’s static game in the main text) between the potential entrant and

the incumbent has two symmetric equilibria in pure strategies—either the potential

entrant enters and the incumbent exits, or the incumbent stays active and the

10



potential entrant stays out. The implied equilibrium entry and survival rules satisfy

(1) (ãE(2, 3) = 1, ãS(1, 3) = 0) and (2) (ãE(2, 3) = 0, ãS(1, 3) = 1). There is

also a mixed-strategy equilibrium, which implies (ãE(2, 3) = 0.5, ãS(1, 3) = 0.25).

These are all symmetric equilibria because all players use the same strategy, even

though that strategy’s actions depend nontrivially on whether the player is a potential

entrant or an incumbent at a particular node of the game tree.

Since an entrant always needs to pay a sunk cost to become active, its expected

payoff from becoming active is strictly lower than that of an incumbent from

remaining active. If an equilibrium strategy dictated that the potential entrant

enters while an incumbent chooses to exit, that incumbent could make a side

payment to the potential entrant in return for focusing on an alternative equilibrium

strategy in which their roles were reversed. With this in mind, we focus on equilibria

in which entry only occurs when all incumbents choose sure continuation. We label

these “natural.”

Definition S4 (Natural Markov-perfect equilibrium) A natural Markov-perfect

equilibrium is a symmetric Markov-perfect equilibrium (ãE, ãS) such that for all

(n, y) ∈ N× Y, ãE(n+ 1, y) > 0 implies ãS(n, y) = 1.

A analogue of the main text’s Lemma 1 establishes that we can again restrict

the equilibrium analysis to states (n, y) in {1, . . . , ň} × Y .

Lemma 1? (Bounded number of firms) In a natural Markov-perfect equilib-

rium, ãE(n, y) = 0 and ãS(n, y) < 1 for all n > ň and for all y ∈ Y.

Proof of Lemma 1?. First, we prove that ãS(n, y) < 1 for all y ∈ Y and n > ň.

Consider a period t? subgame with Nt? = n > ň incumbent firms and demand state

Yt? = y. Define the random time τ as the first period weakly after t? in which the

firms choose exit with positive probability, with τ ≡ ∞ if they never do:

τ ≡ min ({t ≥ t? : ãS(Nt, Yt) < 1} ∪ {∞}) .

Suppose that ãS(n, y) = 1, so τ > t?. By definition, exit occurs only in or after

period τ , so we know that Nt ≥ n for t ∈ {t? + 1, . . . , τ}. (As in the main

text, we take ãS(·) = 1 to dictate sure survival, not merely almost-sure survival.)

Since n > ň, this together with Assumption A2 implies that π(Nt, Yt) < 0 for
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t ∈ {t? + 1, . . . , τ}. If τ =∞, then the incumbent firms receive an infinite sequence

of strictly negative payoffs. If instead τ < ∞, then the incumbent firms receive a

finite sequence of strictly negative payoffs followed by the pre-decision value from

playing the period τ subgame ṽE(Nτ , Yτ ), which equals zero by (2), (5), and the

definition of τ . Therefore, the period t? post-decision value satisfies ṽS(n, y) < 0.

Since a period t? incumbent firm can raise its payoff to zero by choosing certain exit,

the supposition that ãS(n, y) = 1 must be incorrect.

Next, we will prove that ãE(n, y) = 0 for all y ∈ Y and n > ň. Suppose that

ãE(n, y) > 0 for some n > ň. Since we are considering a natural equilibrium, we

know that ãS(n, y) = 1. Therefore, the entrant pays ϕ(n + 1, y) > 0 to enter and

receives π(n+1, Y ′) < 0 from production in the next period. We have already proven

that this firm’s pre-decision continuation value in the next period equals zero, so

the firm earns a strictly negative payoff from entry. Since it could improve its payoff

by choosing not to enter for sure (ãE(n, y) = 0), the supposition that ãE(n, y) > 0

must be incorrect.

As in the main text, we hereafter restrict attention to equilibria in strategies

that default to inactivity. A strategy that defaults to inactivity requires a potential

entrant that is indifferent between continuing with all n incumbents (as it would if

it continued in any natural equilibrium) or not entering to stay out:

ṽS(n+ 1, y) = ϕ(n+ 1, y)⇒ ãE(n+ 1, y) = 0.

Similarly, such a strategy requires an incumbent firm that is indifferent between exit

and continuing with any combination of the current incumbents, and that weakly

prefers exit over continuing with all potentially active firms, to exit:

ṽS(1, y) = · · · = ṽS(n, y) = 0 and ṽS(n+ 1, y) ≤ 0⇒ ãS(n, y) = 0.

2.4 Equilibrium Analysis

The natural equilibrium refinement together with the default-to-inactivity restric-

tion on equilibrium strategies (which, as in the main text, we will keep implicit in

what follows) give us the following lemma.

Lemma S2 The entry strategy in a natural Markov-perfect equilibrium is pure:

ãE(n, y) ∈ {0, 1} for all n ∈ {1, . . . , ň} and all y ∈ Y.
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Proof. Since a natural equilibrium requires ãS(n, y) = 1 when ãE(n, y) > 0,

equilibrium condition (4) can be rewritten as

ãE(n, y) ∈ arg max
a∈[0,1]

a
(
ṽS(n+ 1, y)− ϕ(n, y)

)
.

Therefore, ãE(n, y) = 1 if ṽS(n + 1, y) > ϕ(n, y) and ãE(n, y) = 0 if ṽS(n + 1, y) <

ϕ(n, y). When ṽS(n + 1, y) = ϕ(n, y), the default-to-inactivity restriction requires

ãE(n, y) = 0.

Lemma 2? (Monotone equilibrium payoffs) In a natural Markov-perfect equi-

librium, ṽS(n′, y) weakly decreases with n′ for all y ∈ Y.

The proof of Lemma 2? is identical to that of Lemma 2 in the main text, except for

minor changes in terminology and state variables related to the change in timing.

We repeat it here for completeness only.

Proof of Lemma 2?. It suffices to prove that ṽS(n′, y) ≥ ṽS(n′+1, y) for all n′ ≥ 1

and demand states y ∈ Y . To this end, consider a subgame beginning immediately

after the period t?’s simultaneous continuation and entry choices with Nt?+1 = n′

and Yt? = y. We call this the original subgame. Now consider a second period t?

subgame starting at the same point but with one additional firm. We refer to this

as the perturbed subgame and use N+
t to denote the number of firms serving the

market during period t within it. Finally, define the random time τ+ as the first

period weakly after t? + 1, in which the firms in the perturbed subgame choose exit

with positive probability, with τ+ ≡ ∞ if they never do:

τ+ ≡ min
(
{t ≥ t? + 1 : ãS(N+

E,t, Yt) < 1} ∪ {∞}
)
.

There is no exit before period τ+ in the perturbed subgame and the period τ+

pre-decision continuation value equals zero. Therefore, we can write

ṽS(n′ + 1, y) = lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

]
π(N+

t , Yt) Yt? = y

]
.

Since τ+ is a consequence of equilibrium choices, we know that vS(n′+ 1, y) > −∞.

Now consider an incumbent firm in the original subgame which (possibly)

deviates after the period t? survival stage by choosing to survive for sure as long
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as t < τ+ and to exit for sure if t = τ+. Let N̄t denote the number firms serving

the market during period t in the original subgame with this deviation. Since the

original strategy was part of a subgame perfect equilibrium, ṽS(n′, y) exceeds the

expected payoff from following this deviating strategy. That is

ṽS(n′, y) ≥ lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

]
π(N̄t, Yt) Yt? = y

]
.

To show that the limit on the right-hand side is well defined, note that N̄t ≤ N+
t for

all t ≤ τ+. Otherwise, the two subgames would have potential entrants in the same

states making different entry choices. This would violate either the presumption

that the equilibrium strategy is Markov or that it defaults to inactivity. This

and Assumption A3 imply that π(N̄t, Yt) ≥ π(N+
t , Yt) for all t = t? + 1, . . . , τ+.

Combining this with vS(n′ + 1, y) > −∞ gives the desired result.

Because the difference of two convergent sequences’ limits equals the limit of the

sequences’ difference, we can write

vS(n′, y)−vS(n′ + 1, y)

≥ lim
T→∞

E

[
T∑

t=t?+1

ρt−t
?

1
[
t ≤ τ+

] (
π(N̄t, Yt)− π(N+

t , Yt)
)
Yt? = y

]
.

Each term in the partial sum on the right-hand side is non-negative, so we conclude

that vS(n′, y)− vS(n′ + 1, y) ≥ 0.

Corollary 1? Fix n ∈ {1, . . . , ň} and y ∈ Y, let ṽS be the post-decision value

function associated with a natural Markov-perfect equilibrium that defaults to

inactivity, and suppose that ṽS(n′, y) 6= 0 for at least one n′ ∈ {1, . . . , n} and that

ṽS(n+ 1, y) 6= ϕ(n+ 1, y). Consider the one-shot game in which n incumbent firms

and one potential entrant simultaneously choose between activity and inactivity. This

game has a symmetric Nash equilibrium—possibly in mixed strategies—in which the

potential entrant’s chosen probability of entry does not exceed the incumbents’ chosen

probability of survival. Furthermore, there is only one symmetric Nash equilibrium

with this property. In it, the entry strategy is pure.

Proof of Corollary 1?. Corollary 1?’s one-shot game falls into one of four

mutually-exclusive cases.
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• ṽS(1, y) ≤ 0. Lemma 2? implies that ṽS(n′, y) ≤ 0 for all n′ > 1. Therefore,

exiting for sure (setting ãS(n, y) = 0) is a weakly dominant strategy for an

incumbent. Furthermore, since ṽS(n′, y) 6= 0 for at least one n′ ∈ {1, . . . , n},
we know that ṽS(n + 1, y) ≤ ṽS(n, y) < 0. Therefore, exiting for sure is also

an incumbent’s unique best response to any positive symmetric continuation

probability and any entry probability. Since ṽS(n + 1, y) < 0 < ϕ(n + 1, y),

not entering for sure (setting ãE(n+ 1, y) = 0) is a strictly dominant strategy

for a potential entrant. Therefore, there is only one symmetric equilibrium,

in which all incumbents exit for sure and the potential entrant stays out for

sure.

• ṽS(1, y) > 0 and ṽS(n, y) < 0. To construct the equilibrium of interest, set

ãE(n + 1, y) = 0. No symmetric equilibrium exists with this entry choice

and a pure continuation strategy, because an incumbent’s best response to

all other incumbent firms continuing for sure is to exit for sure, and vice

versa. In a mixed strategy equilibrium, incumbent firms must be indifferent

between continuation and exit. By the intermediate value theorem, there is

some a ∈ (0, 1) that solves

n∑
n′=1

(
n− 1

n′ − 1

)
an

′−1 (1− a)n−n
′
ṽS(n′, y) = 0. (6)

Lemma 2? guarantees that the left-hand side of (6) weakly decreases with a,

and the subcase’s conditions strengthen that conclusion so that the left-hand

side of (6) strictly decreases with a. So, there is only one value of a that solves

(6). The pair ãS(n, y) = a and ãE(n+ 1, y) = 0 form one Nash equilibrium to

this game.

To see that this is the only equilibrium in which ãE(n + 1, y) ≤ ãS(n, y),

suppose to the contrary that there exists another such equilibrium in which

ãE(n + 1, y) > 0. Lemma 2? and the conditions of this case guarantee that

ṽS(n, y) < 0 and ṽS(n + 1, y) < 0, so ãS(n, y) < 1. Since ãS(n, y) ≥ ãE(n +

1, y) > 0 by assumption, we therefore know that both the potential entrant

and the incumbents are indifferent between continuation and exit. The payoff

to a potential entrant is strictly below the payoff to an incumbent in any

outcomes of the game in which both are active, because only the potential
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entrant pays a positive entry cost. With Lemma 2?, this implies that both

can only be indifferent if the potential entrant is more likely to end up with

fewer competitors, ãS(n, y) < ãE(n + 1, y). This violates the restriction that

ãS(n, y) ≥ ãE(n+ 1, y).

• ṽS(n, y) ≥ 0 and ṽS(n + 1, y) < ϕ(n + 1, y). To construct the equilibrium of

interest, set ãE(n+1, y) = 0. Since ṽS(n, y) ≥ 0, pairing this with ãS(n, y) = 1

forms one Nash equilibrium. To show that this is the only equilibrium in which

ãE(n+ 1, y) ≤ ãS(n, y), we look at two cases.

– First, suppose that there exists another such equilibrium in which ãE(n+

1, y) = 0 and ãS(n, y) ∈ [0, 1). By assumption, there exists an n′ ≤ n

such that ṽS(n′, y) 6= 0. Lemma 2? and the supposition that ṽS(n, y) ≥ 0

together imply that ṽS(n?, y) > 0 for all n? ≤ n′. Therefore, the payoff to

continuing with probability a when all other incumbents continue with

probability ãS(n, y) ∈ [0, 1) is strictly increasing in a, so continuing with

any probability greater than ãS(n, y) increases a firm’s profit. Therefore,

the original value of ãS(n, y) ∈ [0, 1) paired with ãE(n+ 1, y) = 0 cannot

have formed an equilibrium.

– Second, suppose that there exists another such equilibrium in which

ãE(n + 1, y) > 0. If ãS(n, y) = 1, then the payoff to the potential

entrant would equal ãE(n + 1, y) (ṽS(n+ 1, y)− ϕ(n+ 1, y)) < 0 in this

equilibrium. Hence, the potential entrant could profitably deviate to

ãE(n + 1, y) = 0, so there cannot be an equilibrium as supposed with

ãS(n, y) = 1. If instead ãS(n, y) < 1, then both the potential entrant

and all incumbents are indifferent between activity and inactivity. With

Lemma 2?, this implies that both can only be indifferent if the potential

entrant is more likely to end up with fewer competitors, so ãS(n, y) <

ãE(n + 1, y). This violates the restriction that ãS(n, y) ≥ ãE(n + 1, y)

Therefore, there cannot be an equilibrium as supposed with ãS(n, y) < 1

either.

Therefore, ãE(n + 1, y) = 0 and ãS(n, y) = 1 form the only symmetric

equilibrium in which ãE(n, y) ≤ ãS(n, y).

• ṽS(n + 1, y) > ϕ(n + 1, y). Lemma 2? and the case’s precondition together
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give us that v(n′, y) > 0 for all n′ ∈ {1, . . . , n + 1}, so sure continuation

(setting ãS(n, y) = 1) is a dominant strategy for each incumbent. For the

potential entrant, since ṽS(n + 1, y) > ϕ(n + 1, y), entering for sure (setting

ãE(n, y) = 1) is a strictly dominant strategy. Therefore, there is a unique Nash

equilibrium. In it, all incumbents choose sure continuation and the potential

entrant chooses sure entry.

This establishes the equilibrium existence and uniqueness asserted by Corollary 1?.

Corollary 2? If ṽE and ṽS are the pre-decision and post-decision value functions

associated with a natural Markov-perfect equilibrium and ãE is that equilibrium’s

entry rule, then

ṽE(n, y) = max{0, ãE(n+ 1, y)ṽS(n+ 1, y) + (1− ãE(n+ 1, y))ṽS(n, y)}.

Proof of Corollary 2?. There are two cases to consider:

• ṽS(1, y) = ṽS(2, y) = · · · ṽS(n, y) = 0. Lemma 2? implies that ṽS(n+ 1, y) ≤ 0,

so setting ãE(n + 1, y) = 0 is a dominant strategy for the potential entrant.

Therefore, the value of certain continuation for any incumbent equals 0 and

the value functions and entry rule satisfy the stated equality.

• There exists an n′ ∈ {1, . . . , n} such that ṽS(n′, y) 6= 0. This case contains two

subcases:

– ṽS(n + 1, y) 6= ϕ(n + 1, y). Corrolary 1? applies. Its proof demonstrates

that

EãE ,ãS [ṽS(N ′, y)|N = n, Y = y]

= ãE(n+ 1, y)ṽS(n+ 1, y) + (1− ãE(n+ 1, y))ṽS(n, y)

if ṽS(n, y) ≥ 0 (in which case ãS(n, y) = 1) and

EãE ,ãS [ṽS(N ′, y)|N = n, Y = y] = 0

if ṽS(n, y) < 0 (in which case ãS(n, y) < 1). Thus, the value functions

and entry rule satisfy the stated equality.
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– ṽS(n + 1, y) = ϕ(n + 1, y). Lemma 2? guarantees that ṽS(n′, y) > 0 for

all n′ ∈ {1, . . . , n+ 1}, so sure continuation (ãS(n, y) = 1) is a dominant

strategy for each incumbent. Since the equilibrium defaults to inactivity,

ãE(n + 1, y) = 0. Thus, the value functions and entry rule satisfy the

stated equality.

Just as with the model of the main text, we constructively demonstrate

equilibrium existence and uniqueness. We present the algorithm for equilibrium

calculation in Supplementary Algorithm 1. It begins by initializing the number of

firms under consideration (n) to ň and both the candidate equilibrium entry rule

α̃E : N × Y → {0, 1} and a dummy function f ? : Y → [0, ρπ̌
1−ρ ] to zero. We will

denote the candidate equilibrium pre-decision and post-decision value functions by

ν̃E and ν̃S, respectively. The algorithm then enters its main loop, which begins by

using Bellman equation iteration (on the dummy function f ?) to solve a dynamic

programming problem. The relevant Bellman operator is

Tn(f ?)(y) = max{0, (1− α̃E(n+ 1, y))ρE[π(n, Y ′) + f ?(Y ′) Y = y] (7)

+ α̃E(n+ 1, y)ρE[π(n+ 1, Y ′) + ν̃E((n+ 1, Y ′), Y ′) Y = y]}.

The next two steps assign the fixed point of Tn stored in f ?(·) to ν̃E(n, ·) and use (3)

to construct ν̃S(n, ·). In the loop’s final step, α̃E(n, y) is set to 1[ν̃S(n, y) > ϕ(n, y)].

If the current value of n exceeds one, it is decremented and the algorithm returns

to the top of the main loop. If instead n equals one, then the algorithm proceeds to

its final task of setting the candidate equilibrium survival rule, which closely follows

its calculation by Algorithm 1 in the main text. Supplementary Algorithm 1 only

computes candidate post-entry and post-survival values and a candidate survival

rule on {1, . . . , ň} × Y . As noted in the main text, it is straightforward to extend

them to the full state space N×Y . Because this extension is of little applied interest,

we keep it implicit and simply refer to Supplementary Algorithm 1 as computing a

candidate equilibrium.

The appropriately modified version of Theorem 1 states that the candidate

equilibrium strategies and payoffs arising from Supplementary Algorithm 1

correspond to the unique natural Markov-perfect equilibrium.
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Theorem 1? (Equilibrium existence and uniqueness) There exists a unique

natural Markov-perfect equilibrium. The equilibrium strategy and corresponding

equilibrium payoffs are those computed by Supplementary Algorithm 1.

Proof of Theorem 1?. The proof is divided into three parts. First, we show

that the candidate continuation values from Supplementary Algorithm 1 satisfy the

monotonicity requirements of Lemma 2?. Second, we use this to demonstrate that

the candidate strategy indeed forms an equilibrium. Third, we establish equilibrium

uniqueness.

Fix n ∈ {1, 2, . . . , ň − 1} and suppose that we know that ν̃E(n + 1, ·) ≥ · · · ≥
νE(ň, ·). This immediately implies that α̃E(n+ 1, ·) ≥ · · · ≥ α̃E(ň, ·). Evaluating Tn

at f ?(·) = ν̃E(n+ 1, ·) gives

Tn(f ?)(y) = max{0, (1− α̃E(n+ 1, y))ρE[π(n, Y ′) + f ?(Y ′) Y = y]

+ α̃E(n+ 1, y)ρE[π(n+ 1, Y ′) + ν̃E(n+ 1, Y ′) Y = y]}

≥max{0, (1− α̃E(n+ 1, y))ρE[π(n+ 1, Y ′) + f ?(Y ′) Y = y] (8)

+ α̃E(n+ 1, y)ρE[π(n+ 2, Y ′) + ν̃E(n+ 2, Y ′) Y = y]}

≥max{0, (1− α̃E(n+ 2, y))ρE[π(n+ 1, Y ′) + f ?(Y ′) Y = y] (9)

+ α̃E(n+ 2, y)ρE[π(n+ 2, Y ′) + ν̃E(n+ 2, Y ′) Y = y]}

= ν̃E(n+ 1, y).

for any y ∈ Y . (For the case with n = ň−1, we define ν̃E(ň+1, ·) = α̃E(ň+1, ·) = 0.)

The inequality in (8) follows from Assumption A3 and the presumption that ν̃E(n+

1, ·) ≥ ν̃E(n + 2, ·). The inequality in (9) follows from α̃E(n + 2, y) ≥ α̃E(n + 1, y)

and

E[π(n+ 1, Y ′) + f ?(Y ′) Y = y] ≥ E[π(n+ 2, Y ′) + ν̃E(n+ 2, Y ′) Y = y].

The final equality follows from the equivalence of ν̃E(n + 1, Y ′) with f ?(Y ′). The

operator Tn is a monotone contraction mapping, so Tn(f ?)(n, ·) ≥ ν̃E(n+1, ·) implies

that ν̃E(n, ·) ≥ ν̃E(n + 1, ·). Recursively applying this argument for n decreasing

from ň−1 to 1 proves that ν̃E(1, ·) ≥ ν̃E(2, ·) · · · ≥ ν̃E(ň, ·) and α̃E(1, ·) ≥ α̃E(2, ·) ≥
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START

n ← ň, f ∗(·) ← 0

f ?(·) ← limi→∞ T
i
n(f ?)(·)

ν̃E(n, ·) ← f ?(·)

ν̃S(n, ·) ← ρE [π(n, Y ′) + ν̃E (n, Y ′) |Y = ·]

α̃E(n, ·) ← 1[ν̃S(n, ·) > ϕ(n, ·)]

n = 1?n ← n − 1

for all n ∈ {1, ..., ň}:

α̃S(n, ·)←


0 if ν̃S(1, ·) ≤ 0

a if ν̃S(n, ·) ≤ 0 < ν̃S(1, ·),
where a solves

∑n
n′=1

(
n−1
n′−1

)
an

′−1(1− a)n−n
′
ν̃S (n′, ·) = 0

1 if ν̃S(n, ·) > 0

STOP
Equation (7) defines Tn. Above,
T in denotes Tn composed with
itself i times.

Yes

No

Supplementary Algorithm 1: Equilibrium Calculation for the Alternative Model
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· · · ≥ α̃E(ň, ·). With Assumption A3 this monotonicity implies that

ν̃S(n′, ·) = ρE [π(n′, Y ′) + ν̃E (n′, Y ′) |Y = ·]

weakly decreases with n′. This is the desired monotonicity result.

For the second part, first note that the algorithm always sets α̃E(n + 1, y) =

1{ν̃S(n + 1, y) > ϕ(n + 1, y)}. Next, consider the requirements of (4) and (5). For

states (n, y) such that ν̃S(n, y) = · · · = ν̃S(1, y) = 0, the monotonicity of ν̃S(n?, y)

in n? ensures that ν̃S(n + 1, y) ≤ 0. Therefore, (4) requires α̃E(n + 1, y) = 0,

which is indeed the case. Given this, (5) imposes only the trivial requirement that

α̃S(n, y) ∈ [0, 1]. Supplementary Algorithm 1’s selection of α̃S(n, y) = 0 satisfies

this. If instead ν̃S(n + 1, y) = ϕ(n + 1, y), then the monotonicity of νS(n?, y) in n?

implies that νS(n?, y) > 0 for n? = 1, . . . , n. Supplementary Algorithm 1 sets αE(n+

1, y) = 0 and αS(n, y) = 1 for these states, which satisfies both (4) and (5). For all

other states (n, y), Supplementary Algorithm 1 sets α̃E(n+1, y) and α̃S(n, y) to the

Nash equilibrium strategies from Corollary 1? game with n incumbents and payoffs

ν̃S(n′, y) from continuation with n′ = 1, . . . , n + 1 firms, which satisfies both (4)

and (5). Equation (2) requires ν̃E(n, y) to equal the expected payoff from this game

to the potential entrant, which is true by construction. Similarly, Supplementary

Algorithm 1 sets ν̃S(n, y) so that it and ν̃E(n, y) satisfy Equation (3) automatically.

We conclude that Supplementary Algorithm 1’s candidate strategy indeed forms an

equilibrium.

The remainder of this proof demonstrates equilibrium uniqueness. Corollary 2?

implies that any equilibrium ṽE(ň, ·) equals the unique fixed point of Tň, ν̃E(ň, ·).
Given this result, Equation (3) implies that ṽS(ň, ·) = ν̃S(ň, ·) in any equilibrium.

In turn, this result and Lemma 2? together imply that ṽS(1, ·) ≥ ṽS(2, ·) ≥ · · · ≥
ṽS(ň − 1, ·) ≥ ν̃S(ň, ·). So when ν̃S(ň, y) > ϕ(ň, y), a potential entrant’s unique

payoff-maximizing choice is sure entry. If instead ν̃S(ň, y) = ϕ(ň, y), then the

restriction that the equilibrium strategy defaults to inactivity requires that the

potential entrant not enter for sure. Finally, if ν̃S(ň, y) < ϕ(ň, y), then the restriction

that the equilibrium is natural also requires the potential entrant not to enter for

sure. Supplementary Algorithm 1’s setting of α̃E(ň, y) = 1 [ν̃S(ň, y) > ϕ(ň, y)] is

the only choice for this entry rule that satisfies these restrictions.

21



Next, repeat the following argument for n decreasing from ň−1 to 1. For given n,

suppose that we have determined that ṽE(n?, ·) = ν̃E(n?, ·) and ãE(n?, ·) = α̃E(n?, ·)
for n? = n + 1, . . . , ň. Corollary 2? implies that any equilibrium ṽE(n, ·) equals

the unique fixed point of Tn, ν̃E(n, ·). Given this result, Equation (3) implies that

ṽS(n, ·) = ν̃S(n, ·) in any equilibrium. In turn, this result and Lemma 2? together

imply that if n > 1, then ṽS(1, ·) ≥ · · · ≥ ν̃S(n, ·). So when ν̃S(n, y) > ϕ(n, y),

a potential entrant’s unique payoff-maximizing choice is sure entry. If instead

ν̃S(n, y) = ϕ(n, y), then the restriction that the equilibrium strategy defaults

to inactivity requires that the potential entrant not enter for sure. Finally, if

ν̃S(n, y) < ϕ(n, y), then the restriction that the equilibrium is natural also requires

the potential entrant not to enter for sure. Supplementary Algorithm 1’s setting of

α̃E(n, y) = 1 [ν̃S(n, y) > ϕ(n, y)] is the only choice for this entry rule that satisfies

these restrictions.

The completion of this recursion establishes that ṽE = ν̃E, ṽS = ν̃S, and ãE = α̃E

in any equilibrium. Applying Corollary 1? then determines that ãS(n, y) = α̃S(n, y)

for any (n, y) such that there exists an n′ ∈ {1, . . . , n} with ν̃S(n′, y) 6= 0 and

ṽS(n + 1, y) 6= ϕ(n + 1, y). States that do not satisfy its preconditions fall into

two cases. If ν̃S(1, y) = ν̃S(2, y) · · · = ν̃S(n, y) = 0, then the monotonicity of

ν̃S(n?, y) in n? guarantees that ν̃S(n + 1, y) ≤ 0. Supplementary Algorithm 1 sets

α̃S(n, y) = 0 for these states, which the assumption that the equilibrium strategy

defaults to inactivity requires. If instead ν̃S(n+1, y) = ϕ(n+1, y), then monotonicity

of ν̃S(n?, y) in n? guarantees that ν̃S(1, y) ≥ ν̃S(2, y) ≥ · · · ≥ ν̃S(n + 1, y) > 0.

Given these values from survival, sure continuation is a dominant strategy for any

incumbent. Supplementary Algorithm 1 indeed sets α̃S(n, y) to one, as required.

We conclude that the equilibrium strategy computed by Supplementary Algorithm

1 is the only natural Markov-perfect equilibrium strategy that defaults to inactivity.
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